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Abstract Exploring the spatial and semantical knowledge from messages in social media
offers us an opportunity to get a deeper understanding about the mobility and activity of
users, which can be leveraged to improve the service quality of online applications like
recommender systems. In this paper, we investigate the problem of the spatial and seman-
tical label inference, where the challenges come from three aspects: diverse heterogeneous
information, uncertainty of individual mobility, and large-scale sparse data. We address the
challenges by exploring two types of data fusion, the fusion of heterogeneous social networks
and the fusion of heterogeneous features. We build a 4-dimensional tensor, called spatial–
temporal semantical tensor (STST), to model the individual mobility and activity by fusing
two heterogeneous social networks, a social media network and a location-based social net-
work (LBSN). To address the challenge arising from diverse heterogeneous information and
the uncertainty of individual mobility, we construct three types of heterogeneous features
and fuse them with STST by exploring their interdependency relationships. Particularly, a
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spatial tendency feature is constructed to constrain the inference of individual mobility and
reduce the uncertainty. To deal with large-scale sparse data, we propose a parallel contextual
tensor factorization (PCTF) to concurrently factorize STST. Finally, we integrate these com-
ponents into an inference framework, called spatial and semantical label inference SSLI. The
results of extensive experiments conducted on real datasets and synthetic datasets verify the
effectiveness and efficiency of SSLI.

Keywords Heterogeneous Social Networks · Social Media · Tensor Decomposition ·
Data Fusion

1 Introduction

Social media, such as Twitter and Weibo, are platforms for users to share news or their
stories with their friends, which have become part of our daily life. Exploring the spatial
and semantical knowledge from the messages in social media is an important task. For
example, if we know the location and activity type of a user through his/her messages, we
can timely make a contextual and personalized recommendation to him/her. So far, existing
researches can be grouped into two categories, factorization-based methods [7,12,21,28,29]
and probability graph-based methods [17,18,24]. Some of these works only focus on the
prediction of locations, but ignore the activities. Some other works propose methods for
prediction of both the locations and the activities, but fail to take into consideration the
interrelation among users, locations, activities, and time, such as social relationship and
geographical features. Besides, the messages in social media usually have no spatial and
semantical labels. As a result, in this paper, we aim at the problem of inferring hidden spatial
and semantical labels of the messages in social media, which is not easy due to the following
challenges:

• Diverse heterogeneous informationThere are diverse heterogeneous information that can
be collected, e.g., social links among individuals, check-in information on each individ-
ual, geographical information on regions, including POIs in each region, and neighboring
relationship between regions. It is a challenge on how to utilize this information to con-
struct meaningful features and relationships to help improve the spatial and semantical
label prediction.

• Uncertainty of individual mobility Gonzalez et al. [6] find that an individual’s mobility
usually rotates around at a few previously visited locations. However, individual mobility
is affected by many factors, such as social circles. As a result, it is difficult to make an
accurate inference for an individual only based on his/her own messages in social media.

• Large-scale sparse data The volume of social media data considered here is huge, which
makes the traditional methods impractical. Besides, few users have messages with spatial
and semantical labels. The proportion of these labeled messages is very low compared
with theirmessageswithout labels, whichmakes it difficult tomake an accurate inference.

In this paper, we address the challenges by exploring two types of data fusion, the fusion
of heterogeneous features and the fusion of heterogeneous social networks. At first, to model
the mobility and activity of users, we fuse two types of heterogeneous social networks, a
social media network and a location-based social network (LBSN), to build a 4-dimensional
tensor, called spatial–temporal temantical tensor (STST).
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Fig. 1 Schematic of the proposed Spatial and semantical label inference (SSLI) framework

To address the challenge of diverse heterogeneous information, we construct meaningful
features from three types of heterogeneous information, social relationship feature, geo-
graphical feature, and spatial tendency feature and fuse them with STST by exploring their
interdependency relationships, where the spatial tendency feature is constructed to constrain
the inference of individual mobility and reduce the uncertainty. To deal with the large-scale
sparse data, we propose a parallel factorizing algorithm, called parallel contextual tensor
factorization (PCTF), to reconstruct the missing entries of STST in a parallel fashion.

As shown in Fig. 1, we integrate our ideas into a unified framework, called spatial and
semantical label inference (SSLI), which consists of three stages. At the first stage, we
construct the STST based on check-ins and the information of point of interest (POI) from an
LBSN and a social media network. At the second stage, we utilize PCTF to factorize and fill
the STST. Particularly, during the factorization, PCTF explores three types of relationships
by identifying additional types of information not captured in the STST model to construct
three types of features and fuses them with STST. The three types of features include social
relationship feature, geographical feature, and spatial tendency feature. At the third stage, we
make spatial and semantical label inference based on the filled STST. Our main contributions
can be summarized as follows:

1. We propose a novel inference framework called spatial and semantical label inference
(SSLI). SSLI is able to make an inference with better accuracy through a data fusion
approach as compared to existing approaches.

2. To fulfill SSLI, we model the mobility and activity of individuals as a 4-dimensional
tensor, called spatial–temporal semantical tensor (STST), by fusing two heterogeneous
social networks, a social media network and a location-based social network (LBSN).
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We also propose a parallel contextual tensor factorization (PCTF) algorithm which can
reconstruct a sparse STST with a divide-and-conquer strategy.

3. With the diverse heterogeneous information that can be collected, we devise a novel
way to utilize this information to construct meaningful features and relationships to help
improve the spatial and semantical label prediction. This is achieved via constructing
three types of novel features and fusing them with STST by exploring their interdepen-
dency relationships. Particularly, a spatial tendency feature is constructed to constrain
the inference of individual mobility to reduce the uncertainty.

4. We compare SSLI with four baseline methods. The results verify the effectiveness and
efficiency of SSLI.

The rest of this paper is organized as follows. We give the notations and preliminaries in
Sect. 2. We construct STST in Sect. 3 and describe the fusion of heterogeneous features in
Sect. 4. We propose PCTF and the inference model of SSLI in Sects. 5 and 6 respectively.
We present the experimental results and analysis in Sect. 7. Finally, we discuss related works
in Sect. 8 and conclude in Sect. 9.

2 Notations and preliminaries

2.1 Notations

In this paper, a scalar is denoted by a capital letter (e.g., N ∈ R) and a vector is denoted by
a italic boldface lowercase letter (e.g., v ∈ R

N×1). A matrix is denoted by an italic boldface
capital letter (e.g., X ∈ R

N×M ), and a tensor is denoted by a calligraphy capital letter (e.g.,
A ∈ R

N×L×M×K ), where the elements in X and A are denoted by xnm , anlmk respectively.
A set is denoted by a bold capital letter (e.g., G).

2.2 Preliminaries

Definition 1 (Heterogeneous social network)A social network is heterogeneous if it contains
multiple kinds of nodes and links. Heterogeneous social networks can be represented as
G = (V,E), where V = ⋃

i V
i is the union of different node sets and E = ⋃

i E
i is the

union of heterogeneous link sets.

Definition 2 (Venue)Venues are certified locations that allowusers checked in on a location-
based social network (LBSN) like Foursquare.When a user checks in at a venue, the category
of the venue can be considered as the activity of the user. (e.g., a user is shopping while
checking in at a supermarket).

Note that we use the terms activity and activity type interchangeably in this paper.

Definition 3 (T ip) In a location-based social network (LBSN), users can post comments
with time stamps and location labels when they check-in at certificated venues, where the
comments are also called tips. The set of tips is denoted by W, where a tip, denoted by w,
consists of three parts, the user w.u, the venue w.v, and the time slot of the check-in time
stamp w.t .
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3 Spatial–temporal semantical tensor

In this section, we model user mobility and activity as a 4-dimensional tensor, called spatial–
temporal semantical tensor (STST), by fusing two heterogeneous social networks, a social
media network and a location-based social network (LBSN).

3.1 Fusion of heterogeneous social networks

In social media networks like Twitter, most ofmessages have no spatial and semantical labels,
while in LBSNs, users often share venues and post comments for the venues. The tips on
LBSNs contain not only text and time stamps, but also the information of venues including
categories and locations. It gives us an opportunity to infer spatial and semantical labels by
applying the fusion of heterogeneous social networks, which aligns users between the social
media network and the LBSN.

Since network alignment is an independent subject and not the focus of this paper, we
employ the method proposed by Zhang et al. [27], called multi-network link identifier (MLI),
to align the users across a social media network and an LBSN. MLI can be classified as a
transfer learning-based method according to the data fusion category summarized by Zheng
[30]. MLI is proposed to solve the multi-network link prediction problem based on the
heterogeneous topological features that are extracted from the selected “social meta paths” in
alignedheterogeneous social networks.MLI introduces amulti-PU link prediction framework
to predict the anchor links among social networks, where the features are defined by meta-
path. The definition of aligned heterogeneous social networks is given as follow:

Definition 4 (Aligned heterogeneous social networks) [27]
If two different heterogeneous social networks share some common users, then the two

networks are called aligned networks. Multiple aligned heterogeneous social networks are
formulated as AG = ((G1,G2, ...,Gn), (A1,2, A1,3, ..., A1,n , A2,3, ..., A(n−1),n)). Gi , i ∈
{1, 2, ..., n} is a heterogeneous social network. Ai, j �= ∅, i, j ∈ {1, 2, ..., n}, is the set of
anchor links between Gi and G j , where an anchor link is an undirected link between Gi

and G j iff (ui ∈ Ui ) ∧ (v j ∈ U j ) (ui and v j are the accounts of the same user in Gi and
G j , respectively).

As Fig. 2 shows the social media network account User B has no spatial and semantical
information. After aligning the LBSN accountUser B’with the accountUser B, we can trans-
fer his/her spatial and semantical information from the LBSN to the social media network,
which makes it possible to model the mobility and activity of User B.

User B’User B

Social Media LBSN

Message User B User B’

Time slot

Words

Check-in

Time slot

Words

Venue

Longitude & 
Latitude

Category
(Semantics)

Anchor link

Aligned Heterogeneous Social Networks

Fig. 2 Aligned heterogeneous social networks
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Fig. 3 An illustration of STST

3.2 Model of the mobility and activity

After aligning users, we model the mobility and activity of users as a 4-dimensional tensor,
which is defined as follow:

Definition 5 (Spatial–temporal semantical tensor (ST ST ))
AnSTST is a tensorA ∈ R

N×L×M×K of four dimensions, respectively, representing users,
regions, activities, and time slots, where N , L , M, K are the numbers of users, activities,
regions, time slots, respectively. An entry anlmk ∈ A stores the number of tips posted by user
n on a specific activity l that happens in a specific region m at a specific time slot k, where a
time slot represents 1h of a day.

STST models users from three aspects, namely the spatiality, the temporality, and the
semantics, where the semantics is represented by the category of venue which can be taken
as the user-activity. As Fig. 3 shows the STST can be understood as a series of user tensors
with three dimensions along the user dimension. An entry in a user tensor records how often
the user does a specific activity in a specific region at a specific time slot.

4 Fusion of heterogeneous features

Although using tensor factorization to identify latent features have been applied in many
applications [16,22,31], here we attempt to take advantage of the diverse heterogeneous
information that can be collected, e.g., social links among individuals, check-in information
of each individual, geographical information on regions, including POIs in each region, and
neighboring relationship between regions to help address the data sparsity and noise issues.
Particularly, in order to reduce the uncertainty of individual mobility, a spatial tendency
feature is constructed.

4.1 Social relationship feature

With the help of user alignment, we are able to use not only the explicit social links in the
social media network, but also the implicit social links across the social media network and
the LBSN, to extract social relationship features for users. Figure 4 shows an example of the
extraction of social relationship feature from aligned users. As shown in Fig. 4, we can figure
out users’ both one-step friendships and multi-step friendships across two heterogeneous
social networks.We represent the social relationships of users by a social relationship feature
matrix, which is defined as follow:
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Fig. 4 Extracting social relationship feature from aligned heterogeneous social networks

Definition 6 (Social relationship feature matrix)
For a set of users in aligned heterogeneous social networks AG, their social relationship

feature matrix, denoted by US ∈ R
N×N , is a matrix in which an entry u(n1n2)

s is the weighted
distance between user n1 and user n2:

u(n1n2)
s =

⎧
⎪⎪⎨

⎪⎪⎩

1 SDis(n1, n2) = 0
0.1 SDis(n1, n2) = 1
0.01 SDis(n1, n2) = 2
0 SDis(n1, n2) > 2

where N is the number of individuals and SDis(n1, n2) counts the steps between user n1
and user n2.

For example, as shown in Fig. 4, SDis(User A, User A) = 0, so us(User AUser A) = 1;
SDis(User A, User D) = 2 after aligning users, so us(User AUser D) = 0.01.

Intuitively, the social relationships of individuals are affected by their social preference
and the features of their latent friends. Inspired by this idea, we can approximateUS ∈ R

N×N

by
US ≈ U × UT

L, (1)

where U is the user latent feature matrix, UL ∈ R
N×D is the social preference latent feature

matrix, and D is the number of latent features.

4.2 Spatial tendency feature

In order to reduce the uncertainty of individual mobility, we construct the spatial tendency
feature. Intuitively, an individual’s mobility usually rotates around at a few previously visited
locations [6]. The individual’s mobility is also affected by his/her own social circle (e.g., a
user may check-in at a restaurant nearby his/her friends’ home for meeting). Inspired by these
intuitions, we define the spatial tendency feature matrix as follow:
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Definition 7 (Spatial tendency feature matrix)
For a set of individuals and a set of regions, their spatial tendency feature matrix, denoted

by ST ∈ R
N×M , is defined as

ST = US × UR, (2)

where US is the social relationship feature matrix defined in Definition 6, and UR is the
User-Region matrix in which an entry u(nm)

r = ∑L
l=1

∑K
k=1 anlmk, anlmk ∈ A, stores the

number of check-ins of a user n at a region m.

4.3 Geographical features

Regions are divided in terms of administrative divisions. The spatial label of a tip can be
represented by the corresponding region index. We build eight geographical features for a
region, which are described as follows:

Popularity: For a region rm , its popularity, denoted by R(rm )
1 , is defined as the total check-in

number in region rm .

Repeat business: For a region rm , its repeat business, denoted by R(rm )
2 , is defined as the

average check-in number over people who check-in at rm . Richness: For a region rm , its
richness, denoted by R(rm )

3 , is defined as the number of venue types in region rm .

Density: For a region rm , its density, denoted by R(rm )
4 , is defined as the number of venues

in region rm .
The above four geographical features reflect the prosperity of a region from the four

aspects.

Region entropy: For a region rm , its region entropy, denoted by R(rm )
5 , is defined as the

heterogeneity of the venue types in region rm :

R(rm )
5 = −

∑

ρ

M (rm )
ρ

R(rm )
4

× log
M (rm )

ρ

R(rm )
4

,

where ρ is the type of venue, R(rm )
4 is the density of regionm, M (rm )

ρ is the number of venues
of type ρ in region rm .

This feature assesses the influence of the spatial heterogeneity of a region [10]. For exam-
ple, the region entropy of a business center might be higher than the region entropy of a
residential area, since the venues in the business center might be more diversified.

Inward flow: For a region rm , its inward flow, denoted by R(rm )
6 , is defined as the total inward

flow that users transfer from outside to region rm within time threshold Th:

R(rm )
6 = | {(c1, c2) | c1.u = c2.u, c1.v /∈ rm, c2.v ∈ rm, 0 < c1.t − c2.t < Th}| .

This feature reflects whether a region is attractive to users [10]. Here the idea is that regions
with high inward flow are mostly the last places where the users check-in at, which means
these places can really retain consumers.

Outward flow: For a region rm , its outward flow, denoted by R(rm )
7 , is defined as the total

outward flow that users transfer from region rm to outside within time threshold Th:

R(rm )
7 = | {(c1, c2) | c1.u = c2.u, c1.v ∈ rm, c2.v /∈ rm, 0 < c1.t − c2.t < Th}| .
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A region with high outward flow suggests that the region is a springboard. For example, when
a region contains a station or airport, the region might have a high outward flow.

Transition pair: For a region rm , its transition pair, denoted by R(rm )
8 , is defined as the

total number of transition pairs that users transfer between venues in region rm within time
threshold Th:

R(rm )
8 = |{(c1, c2) | c1.u = c2.u, c1.v ∈ rm, c2.v ∈ rm, 0 < c1.t − c2.t < Th}| .

This feature also accesses the prosperity of a region. A region with massive transition pairs
indicates that the region contains abundant and various venues.

Based on the eight geographical features, we can represent a set of regions by a geograph-
ical feature matrix, which is defined as follow:

Definition 8 (Geographical feature matrix)
For a set of regions, {r1, ..., rm, ..., rM }, their geographical feature matrix, denoted by

RF ∈ R
M×8, is defined as

RF =

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

R(r1)
1 R(r1)

2 R(r1)
3 R(r1)

4 R(r1)
5 R(r1)

6 R(r1)
7 R(r1)

8
... ... ... ... ... ... ... ...

R(rm )
1 R(rm )

2 R(rm )
3 R(rm )

4 R(rm )
5 R(rm )

6 R(rm )
7 R(rm )

8
... ... ... ... ... ... ... ...

R(rM )
1 R(rM )

2 R(rM )
3 R(rM )

4 R(rM )
5 R(rM )

6 R(rM )
7 R(rM )

8

⎫
⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎭

where M is the total number of regions.

Intuitively, the geographical features of regions are affected by the regions and the features
themselves. Inspired by this idea, we can factorize RF ∈ R

M×8 as follow:

RF ≈ R × RL, (3)

where R ∈ R
M×D is a region latent feature matrix, RL ∈ R

D×8 is a latent feature matrix of
geographical features, and D is the number of latent features.

5 Parallel contextual tensor factorization

Wedescribe the parallel contextual tensor factorization (PCTF) in this section, and summarize
the notations inTable 1. PCTF fuses the contexts defined in last section to a tensor factorization
and factorizes the STST into a tensor product of a low-rank core identity tensor and four
latent feature matrices, which carry the information about users, activities, regions, and time,
respectively. To make the factorization scalable, PCTF takes a divide-and-conquer strategy.
PCTF first divides the tensor into sub-tensors, and then factorizes each sub-tensor in parallel
by invoking the contextual tensor factorization (CTF). At last, PCTF generates the complete
filled STST by integrating the filled sub-tensors. Figure 5 gives an illustration of PCTF. The
definition of CTF is given as follow:

Definition 9 (Contextual tensor factorization (CT F))
The factorization of a given STST, A ∈ R

N×L×M×K , is defined as

A = I ×1 U ×2 C ×3 R ×4 T ,
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Table 1 Notations

Dimension Description Fixed

A N × L × M × K The given STST Yes

I D × D × D × D Identity tensor with four
dimensions

Yes

US N × N Social relationship feature
matrix

Yes

RF M × Dr Geographical feature matrix,
where Dr = 8

Yes

ST N × M Spatial tendency feature
matrix

Yes

UR N × M The User-Region matrix Yes

U N × D User latent feature matrix No

C L × D Activity latent feature matrix No

R M × D Region latent feature matrix No

T K × D Time slot latent feature matrix No

UL N × D Social relationship latent
feature matrix

No

RL D × Dr Latent feature matrix of
geographical features,
where Dr = 8

No

UR N × M The inferred User-Region
matrix

No
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Fig. 5 The framework of parallel contextual tensor factorization (PCTF)
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where the symbol ×i stands for the tensor-matrix multiplication along the i th dimension of
the tensor; U,C, R, T are the latent feature matrices of users, activities, regions, and time
slots, which are calculated by solving the following optimization problem:

argmin
U,C,R,T ,UL,RL

Δ(U,C, R, T ,UL, RL) . (4)

Δ is the cost function of the tensor A, which is defined as

Δ(U,C, R, T ,UL, RL) = F0 + λ1F1 + λ2F2 + λ3F3 + λ4F4, (5)

where

1. F0 = 1
2‖A − I ×1 U ×2 C ×3 R ×4 T‖2F is used to control the error of decomposing,

where ‖ · ‖F denotes the Frobenius norm;
2. F1 = 1

2‖US−U×UT
L‖2F is used to control the error of the constraint of social relationship

feature (see Definition 6), and U is shared with F0;
3. F2 = 1

2‖UR − ST‖2F is used to control the error of the constraint of spatial tendency
feature, UR is the sub-matrix of the inferred User-Region matrix in which an entry
u(nm)
r = ∑L

l=1
∑K

k=1
∑D

d=1 undcldrmd tkd , and ST is the sub-matrix of the Spatial Ten-
dency Feature Matrix (see Definition 7);

4. F3 = 1
2‖RF − R × RL‖2F is used to control the error of the constraint of geographical

features (see Definition 8), and R is shared with F0;
5. F4 = 1

2 (‖U‖2F +‖C‖2F +‖R‖2F +‖T‖2F +‖UL‖2F +‖RL‖2F) are regularization penalties;
6. λ1, λ2, and λ3 are the weights for the contexts, and λ4 is the weight for regularization

penalties.

Algorithm 1 PCTF (Parallel Contextual Tensor Factorization))
INPUT:

A: The original tensor;
US: Social Relationship Feature Matrix;
RF: Geographical Feature Matrix;

OUTPUT:
A: The filled sub-tensor;

1: Divided A into sub-tensors;
2: parallel foreach (sub-tenorA(γ )) {
3: Call CTF for each sub-tenor A(γ );
4: }
5: Joint all the filled sub-tensors to A
6: Output A;

Algorithm 1 gives the outline of PCTF, and Algorithm 2 gives the outline of CTF which
is invoked by PCTF for sub-tensors. Note that as there is no closed-form solution to Eq. (4),
CTF searches a local minimum solution for a sub-tensor based on gradient descent.

6 SSLI inference model

We take the filled spatial–temporal semantical tensor (STST) as the input for the spatial and
semantical label inference. Given a message in a social media network, an inferred activity
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Algorithm 2 CTF (Contextual Tensor Factorization)
INPUT:

A: The original tensor;
US: Social Relationship Feature Matrix;
RF: Geography and Mobility Feature Matrix;

OUTPUT:
A: The filled sub-tensor;

1: Init U,C, R, T ,UL, RL;
2: LastΔ = MaxDouble; Δ = MaxDouble/2;
3: while (LastΔ − Δ > ε) {
4: LastΔ = Δ;
5: Set η according to backtracking line search [19];
6: U = U − η ∂Δ

∂U ;

7: C = C − η ∂Δ
∂C ;

8: R = R − η ∂Δ
∂R ;

9: T = T − η ∂Δ
∂T ;

10: UL = UL − η ∂Δ
∂UL

;

11: RL = RL − η ∂Δ
∂RL

;

12: A = I ×1 U ×2 C ×3 R ×4 T ;
13: Compute Δ according to Eq. 5;
14: }
15: OutputA;

weight vector va ∈ R
L×1 and an inferred region weight vector vr ∈ R

M×1 are expected as
the output, where an entry v(l)

a in va stores the probability that s.activi t y = l; an entry v(m)
r

in vr stores the probability that s.region = m.
Given a message s in social media, its corresponding user ID is n and the time slot is k,

the semantical label inference can be made by Eq. (6):

va = I
(
An∗∗kAT

n∗∗k
)
X, (6)

where I ∈ R
L×L is an identity matrix, X ∈ R

L×1 is filled with 1,An∗∗k ∈ R
L×M is a matrix

which is a slice ofA, and the symbol ’∗’ denotes the corresponding dimensions between the
tensor and the matrix.

The spatial label inference can be made by Eq. (7):

vr = I
(
AT

n∗∗kAn∗∗k
)
X, (7)

where I ∈ R
M×M is an identity matrix, X ∈ R

M×1 is filled with 1, andAn∗∗k ∈ R
L×M is a

matrix which is a slice of A.
Because L and K are both constants, the time complexity of semantical and spatial label

inference are both constants.

7 Experiment

In this section, we first verify the effectiveness of three contexts defined in Sect. 4 and geo-
graphical features defined in Sect. 4.2 by investigating their interdependency relationships.
To verify the effectiveness and efficiency of our proposed method, we then compare SSLI
with the baseline methods. All experiments are executed on a Windows 7 PC with an Intel
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Fig. 6 Region segmentation in a NYC and b LA

Xeon CPU of 3.4GHz and 16 GBRAM, and all programs are implemented in C#. The source
code is available on [13].

7.1 Datasets

We conduct our experiments on two different real-world heterogeneous social network
datasets, Foursquare andTwitter. Due to the sparsity of check-in data,we joint twoFoursquare
datasets which are respectively collected by Zhang et al. [11,25,26] and Bao et al. [1].

Social media network: twitter dataset [11,25,26] contains 5,223 users, 9,490,707 tweets,
and 164,920 social links.

LBSN: foursquare dataset part 1 [11,25,26] contains 5,392 users, 48,756 tips, 38,921
venues, and 76,972 social links.

LBSN: foursquare dataset part 2 [1] contains 221,128 tips generated by 49,062 users at
46,065 venues in NewYork City (NYC) and 104,478 tips generated by 31,544 users at 31,864
venues in Los Angeles (LA).

There are totally 14 categories of venues in the two foursquare datasets: Government,
health and beauty, legal and finance, estate and construction, entertainment and arts, edu-
cation, food and dining, home and family, professional and services, shopping, sports and
recreation, travel, nightlife, outdoors. We find 68,936 venues in New York City (NYC) and
Los Angeles (LA) from two Foursquare datasets. We crawl 2678 check-ins and tweets with
spatial and semantical labels which are posted by the users from 174 anchor users who have
accounts on the two heterogeneous social networks.

We use the foursquare dataset as the training set and the twitter dataset as the test set. To
construct the time slot dimension of spatial–temporal semantical tensor (STST), we map the
time of check-ins into one of 24 time slots corresponding to the 24h in a day. To build the
region dimension, we divide regions by administrative divisions artificially. For example, as
shown in Fig. 6, each point represents a venue, and each color represents a region. New York
City is divided into 14 regions, and Los Angeles is divided into 14 regions as well. Note that
Manhattan is divided into 3 regions, since the number of venues in Manhattan is much larger
than those in other regions.

Additionally, to verify the efficiency of the proposed method, we also generate a very
large synthetic dataset consisting of 50 billion entries.
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7.2 Inference metric

For a message in a social media network, its ground-truth activity weight vector and region
weight vector, denoted by va and vr , are defined as

va =
{
v(1)
a , ..., v(l)

a , ...v(L)
a

}
,

vr =
{
v(1)
r , ..., v(m)

r , ...v(M)
r

}
,

where v
(l)
a = 1 if l is the ground-truth activity label, and 0 otherwise; v

(m)
r = 1 if m is the

ground-truth region label, and 0 otherwise.
To evaluate the performance of the inference, we propose an accuracy, which is defined

as

Acc = 1 −
∑ |v − v|

2S
,

where S is the number of samples.

7.3 Baseline methods

In order to demonstrate the effectiveness of our framework, we compare our approach with
the following baseline methods:

1. TF,TF+ F1,TF+ F2,TF+ F3,TF+ F1 + F2,TF+ F1 + F3,TF+ F2 + F3 In order
to verify the effectiveness of the contexts defined in Sect. 4, we will compare PCTF
(TF+F1 +F2 +F3) with the different combinations of TF and the three contexts, where
TF is the tensor factorization part of the cost function, i.e., F0 + λ4F4 in Eq. (5).

2. Matrix factorization (MF) MF is proposed by B. Webb [23] to solve the movie recom-
mender problem in Netflix Price. MF assumes the latent features of objects are described
by vectors, and different types of objects have factors with the same size.When predicting
the rating of users to objects, the estimated ratings can be expressed as the product of the
latent features of the given users and the given objects. The general expression of matrix
factorization is:

R = P QT, (8)

where P ∈ R
N×D is the latent feature matrix of objects. Q ∈ R

M×D is the latent feature
matrix of the objects. N and M are the number of the users and objects, respectively. D
is the number of latent features.
To infer the spatial and semantical labels of tips, we apply two factorizations: user-activity
matrix factorization RA = PA QT

A and user-region matrix factorization RR = PR QT
R,

where RA and RR are filled according to users’ historical check-in data. Therefore, for
a message, the inferred spatial and semantical label vectors are the corresponding user’s
row vectors in PA QT

A and PR QT
R.

3. BiasedMatrixFactorization (BiasedMF)BiasedMF is proposed byPaterek [14],which
is an extension of Basic Matrix Factorization. Biased MF adds biased rates to the objects
of either type. The formula of inference is given as follow:

r̂nm = bn + bm + ∑D
d=1 pndqmd , (9)

where r̂nm is an estimate of rate that the user n gives to the object m, D is the number of
latent features. The pud and qmd are the entries of the latent feature matrices of users and
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objects. bu and bm are the biases of user u and object m, respectively.
To infer spatial and semantical labels, we do the same thing as what we do in MF.

4. Who+Where+When+What (W4) W4 is a probabilistic model, which discovers users’
mobility behaviors from spatial, temporal, and semantical aspects [24]. After learning
the model on training set, W4 can directly infer a given message’s spatial and semantical
labels.

5. Text-Mining-based method (TMBM) TMBM is a part of W4. Given collections of
words with spatial and semantical labels, TMBM can learn the relationships between the
representation of words and the spatial and semantical labels. Given the text of a tip, we
can infer its spatial and semantical labels based on the learned relationships.

7.4 Parameter setting

The parameters, D, λ1, λ2, λ3 and λ4 are all real numbers, which cannot be determined in
polynomial time. As a result, to determine the parameters, we use a heuristic method that
tuning them one by one in fixed step size. First, we determine the number of latent features
D by setting λ1 = 0, λ2 = 0, λ3 = 0 and λ4 = 0 on training data. According to the result
shown in Fig. 7, we set the number of latent features D = 3.

Next, we determine the parameters, λ1, λ2, λ3 and λ4, by tuning them one by one on the
training set. According to the average Acc of spatial and semantical label inference shown
in Fig. 8, we set λ1, λ2, λ3 and λ4 to 0.3, 0.5, 0.2 and 0.1, respectively.

7.5 Effectiveness verification of contexts

Now, we verify the effectiveness of three contexts, social relationship (F1), spatial tendency
(F2), and geographical features (F3), which are defined in Sect. 4.

During the experiment, if one context is not selected, its weight parameter is set to 0. For
example, the setting of parameters for factorization combination “TF + F1 + F2” will be
λ1 = 0.3, λ2 = 0.5, λ3 = 0 and λ4 = 0.1.

As Fig. 9 shows when all contexts are considered, SSLI performs best. One can note
that not all the contexts are equally important. When only considering one context, we find
that the spatial tendency (F2) is the least important context. However, when considering
two contexts, we find that the combination dropping F2 performs worst. According to the
Definition 7, F2 involves two aspects, users and regions, which are connected to the other
two contexts. And, there is no direct correlation between F1 and F3. As a result, in addition
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to TF, TF+F2 performs worst, TF+F1 +F2 and TF+F2 +F3 outperform TF+F1 +F3,
and TF + F1 + F2 + F3 performs best.

7.6 Effectiveness verification of geographical features

Now, we verify the effectiveness of the eight geographical features by running SSLI with
different settings where one includes all eight features, and the others each drops one of the
eight features. Note that in all settings, the contexts of social relationship and spatial tendency
are considered .

As Fig. 10 showswhen all the geographical features are included, SSLI performs best. One
can note that not all the features are equally important. For example, the geographical feature
“Richness” is less important than the other features. This is because “Richness” represents the
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number of venue types in a region which cannot accurately distinguish wide-range regions,
which likely contain all types of venues. The geographical feature “outward flow” is also less
important than the other features. This is because “outward flow” is not identifying enough
as well. Many factors may lead to the increasing of “outward flow” of a region, e.g., the
station and the convention center in the region.

7.7 Accuracy

We run SSLI and the baseline methods 100 times as they are all sensitive to initialization.
Figure 11 shows the average accuracy of eachmethod.We can give some analyses as follows:

1. BiasedMF outperforms Basic MF, as BiasedMF is originally proposed to improve basic
MF by adding biased rates to the objects of both spatial and semantical labels. SSLI,
however, still outperforms BiasedMF, which is because SSLI can take into consideration
not only the profiles of the users, but also the post time of tweets.

2. SSLI performs far better than TMBM, which is because the representations of posts in a
social media network are quite different from those in LBSN. We also note that TMBM
performs better for semantical label inference than for spatial label inference. This is
because in many cases, the words of a post in a social media network partly reflect the
activities of users, but the regions are less mentioned than the activities.

3. SSLI outperforms W4, which is because SSLI can take into consideration not only the
three aspects of individuals, but also the practical experiences in real world.

Next, we do the Friedman test [2] to show the superiority of our method. We run SSLI
and baseline methods 50 times, where we randomly exchange 5% check-ins of training set
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Table 2 The performance rank comparison of SSLI and baseline methods

MF BiasedMF TMBM W4 SSLI

Overall average rank 4.08 3.94 3.92 2.04 1.02

Table 3 The rank differences
between SSLI and four baseline
methods

MF BiasedMF TMBM W4

Rank differences 3.06 2.92 2.90 1.02

and test set at each time. Let r ij be the rank of the j th method on the i th test. The Friedman
test compares the average ranks of our methods and the baseline methods, where the average
rank of the j th method is R j = 1

N

∑
i r

i
j . The null-hypothesis of Friedman test states all the

algorithms are equivalent, and so their ranks R j should be equal [4]. Iman and Davenport
[15] show that the original Friedman statistic χ2

F is undesirably conservative and propose a
better statistic

FF = (N − 1)χ2
F

N (k − 1) − χ2
F

, (10)

where χ2
F = 12N

k(k+1)

[∑
j R

2
j − k(k+1)2

4

]
. The rejection region of null-hypothesis at 95%

confidence level is FF > μ0.95 = 2.4177, where 0.95 is the confidence level. Based on Eq.
(10) and the results shown inTable 2,we getχ2

F = 7583.6320 and FF = 167.6608 > 2.4177.
Thus, the test statistics fall into the rejection region, which indicates that the alternative
hypothesis, the average accuracies of ourmethod and the baselinemethods are not equivalent,
is accepted.

Since the alternative hypothesis of Friedman test is accepted, we further proceed with a
post hoc test, Bonferroni–Dunn test [5], to make a further comparison between SSLI and
each baseline method. The performances of a pair of compared methods are significantly
different if the corresponding average ranks differ by at least the critical difference

CD = qα

√
k(k + 1)

6N
, (11)

where the critical value qα is based on the Studentized range statistic divided by
√
2 [4].

By comparing the performance of SSLI with those of the baseline methods, we calculate
the average rank differences between SSLI and baseline methods. As shown in Table 3, all

the differences are greater than the critical difference CD = qα

√
k(k+1)
6N = 0.7899, where

k = 5, N = 50, and qα = 2.498, at 95% confidence level. As a result, SSLI is superior to
all the baseline methods at 95% confidence level.

In summary, SSLI is an effective method for inferring the spatial and semantical labels for
messages in social media, and the inference results of SSLI are better than all the baseline
methods.

7.8 Efficiency

First, we investigate how the cost of CTF changes with the number of iterations on the
real dataset, where the cost is evaluated according to Eq. (4). The real dataset contains
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Fig. 13 The iteration number and memory usage of PCTF on tensors with different number of users, regions,
and activities. a 10 activities, 10 regions. b 1000 users, 10 activities. c 1000 users, 10 regions

174 users, 28 regions, 14 activities, and 24 timeslots. As shown in Fig. 12a, the cost of
CTF rapidly decreases with the number of iterations and finally converges at about 1956.6.
Then, we verify the efficiency of PCTF on different number of threads. We first divide
the original tensor into 24 sub-tensors equally and use C threads to run PCTF by setting
C = 1, C = 2, C = 4, C = 6, C = 8, respectively. Figure 12b indicates how the overall
running time of PCTF decreases with the increase of the thread number. When doubling the
threads, the sub-tensors needed to be factorized for each thread will be halved. As a result,
compared with one thread strategy, the parallel strategy can cut down the running time to
1/C .

Then, we investigate how the iteration number and thememory usage of CTF changeswith
the number of users, regions, and activities, on a synthetic dataset. We generate a synthetic
tensor contains 50,000,000,000 entries consisting of 50,000 users × 500 regions × 500
activities × 4 timeslotes, where 0.2% entries of the tensor are randomly selected and filled
according to uniform distribution.

We use eight threads to run PCTF on randomly generated tensors with different num-
ber of users, regions, and activities. As shown in Fig. 13, the average iteration number and
the memory usage of CTF increases linearly with the number of users, regions and activi-
ties.

To verify the running time of PCTF, we also use eight threads to run PCTF on the ran-
domly generated STSTs with different number of users, regions, and activities and check
the running time of each parallel factorization. Then, we infer the spatial and semantical
labels for 100 synthetic tweets on each of the filled synthetic STST. As shown in Fig. 14,
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Fig. 14 The running time of PCTF and inference on tensors with different number of users, regions, and
activities. a 10 activities, 10 regions. b 1000 users, 10 activities. c 1000 users, 10 regions

Table 4 The average time consumption and memory usage of PCTF

#Users × #Regions × #Activities Memory usage (MB) Running time (min)

1,000,000 623.87 69.33

2,000,000 1399.02 162.35

3,000,000 2172.91 273.63

4,000,000 2946.20 419.51

5,000,000 3719.83 582.74

the curves marked by crosses denote the running time of PCTF, and the curves marked
by rhombuses denote the running time of inference. The results show the running time of
PCTF grows with a polynomial time complexity of about order 1.5 as the number of users,
regions, and activities increases, while the running time of inference keeps constant with
the increase of the scale of training set. Note that the influence of the number of users,
regions, and activities made on the running time and memory usage of PCTF are different
as shown in Figs. 13 and 14. Table 4 summarizes the average time consumption and mem-
ory usage of PCTF when fixing the product of the number of users, regions, and activities,
respectively.

We test the limitation under the current experimental environment. Here we assume the
default parameter setting is 1000 users, 10 regions, and 10 activities over four timeslots.
We explore the limit on each parameter separately, while keeping the other parameters with
the default setting. We found the maximum number of users that can be supported is up to
754,400, while the maximum numbers of regions and activities that can be supported are up
to 4100 and 5800, respectively.

8 Related work

There exist four classes of methods for label inference which are data fusion-based methods,
text-mining-based methods, probabilistic model-based methods, and tensor decomposition-
based methods.

Data fusion-based methods
Zhang et al. [27] propose a framework, called multi-network link identifier (MLI), to solve
the multi-network link prediction problem by aligning the users between a social media
network and an LBSN. Zheng et al. [31] propose a context-aware tensor decomposition to
infer the fine-grained noise situation in New York City. However, their objective problems
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are different from ours, and their methods involve only one type of data fusion, while we
develop two types of data fusion, i.e., the fusion of heterogeneous social networks and the
fusion of heterogeneous features.

Text-mining-based methods
Traditional methods mine the spatial and semantical labels fromwords.Wang et al. [20] learn
the relationship between locations and words based on latent dirichlet allocation (LDA). By
using an LDA-based model, Hao et al. [8] extract locations from travelogues. However, in
social media, the words of messages are mostly independent with spatial and semantical
labels, which makes the traditional text-mining methods unsuitable for these kind of mes-
sages.

Probabilistic model-based methods
Gonzlez et al. [6] find that an individual’s mobility usually rotates around at a few previously
visited locations, (e.g., home or office) and the mobility of an individual can be modeled
as a stochastic process centered at several specific points. Song et al. [17,18] focus on the
predictability of human mobility, and report that there is 93% human mobility, which is
contributed by the high regularity of human behavior. Cho et al. [3] observe that the mobility
of each user is centered at two regions, “work” and “home”. They model each region as a
Gaussian distribution over latitude and longitude. The probability that a user stays at the two
regions is modeled as a function of time. They propose a generative model, periodic mobility
model (PMM), to predict the location of a user. PMM takes users and timestamps as input; it
generates a region, and the region further generates a geographical location. However, none
of these works take users’ activities into consideration.

Some probabilistic models infer both the region and the topic of a tweet according to
users’ regularities and motilities. Hong et al. [9] present a Bayesian network which depicts
the dependency among region, user, topic, and geographical location. Based on the net-
work, Hong et al. learn the geographical topics for tweets. In addition, Yuan et al. [24]
further study temporal aspect to model both of the users’ spatial and semantical topics,
which offers the first solution to jointly model individuals from the spatial, temporal, and
topical aspects. However, these models assume that “an individual’s mobility usually cen-
ters at different personal geographical regions, e.g., home region and work region [3] and
users tend to visit places within these regions [24]”. In real-world social networks, such as
Foursquare, the geographical location labels of check-ins are very randomness, especially
on weekends. As social animals, the mobility and activity of users are largely affected by the
social circles. However, none of these works take the social relationship among users into
consideration.

Tensor decomposition-based methods
Zheng et al. [28,29] propose a tensor decomposition-based method to recommend locations
and activities for users by using the location data based on GPS and users’ comments. They
also model the mobility and activity of users by a tensor and propose a context-aware CP
decomposition to address the sparse data problem in mobile information retrieval. Similarly,
a series of context-aware tensor decomposition-based methods are proposed [16,22,31] to
solve problems in Urban Computing. However, the volume of social media data considered
here is huge, which makes the traditional serial methods unpractical.
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9 Conclusion

In this paper,wepropose an inference framework, called spatial and semantical label inference
(SSLI), to infer the spatial and semantical labels for themessages in socialmedia by exploring
two types of fusion, namely the fusion of heterogeneous social networks and the fusion of
heterogeneous features.

We first model the mobility and activity of users as a spatial–temporal semantical tensor
(STST) by fusing two heterogeneous social networks, a social media network and an LBSN.
Then,we construct three types of heterogeneous features including social relationship feature,
geographical features, and spatial tendency feature and fuse them with STST by exploring
their interdependency relationships. Particularly, the spatial tendency feature is constructed
to constrain the inference of individual mobility and reduce the uncertainty of mobility. We
propose a factorizing algorithm, called parallel contextual tensor factorization (PCTF), to fill
the missing entries of STST in a parallel fashion. The spatial and semantical labels can be
inferred by retrieving the filled STST. We conduct the experiments on real datasets from two
different domains, Twitter and Foursquare. The results verify the effectiveness and efficiency
of SSLI.

The matrix and tensor factorization with constraints can be considered as a fusion of
heterogeneous features. By using heterogeneous features to constrain latent features which
are produced by the factorization, we are able to integrate priori knowledge about those het-
erogeneous features so as to achieve a higher accuracy of filling in the missing entries of
the original tensor. So far, our method demands at least one of the source network contains
abundant check-in data. In the future, we are going to study a pointed social network fusion
method, so as to apply our method on those networks which have only little location informa-
tion, such as Facebook and LinkedIn. Besides, we are going to apply the factorization-based
feature fusion to broader domains, such as information diffusion and explicable recommen-
dation.
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