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Abstract—Session-based recommendation aims to predict
user’s next action based on the anonymous sessions. Recent
studies mainly apply Graph Neural Networks (GNN) to model the
complex item-transitions and transfer the collaborative signals
among sessions. However, most existing methods ignore the
semantic inconsistency problem cause by item functional diversity
and popular item during the process of cross-session collaborative
signal capturing, which may lead to a preference negative transfer
between irrelevant sessions. In addition, current works neglect
to retain the semantic discriminability when learning the rep-
resentations of sessions and items, and consequently degenerate
the personalized recommendation. In this paper, we propose a
novel model, called Anchor-Semantics-Aware Neural Preference
Propagation (ASA-NPP), to simulate the transfer of collaborative
signals with an anchor-semantics-aware recursive neural propa-
gation over a designed graph. Specifically, we devise a Session
Graph with Anchor Links (SGAL) based on all sessions, and
then present an Anchor-Semantics Attention Network (ASAN)
to transfer the semantically consistent cross-session collaborative
signals and learn session-specific embeddings encoding different
session semantics. Furthermore, we propose a Session Semantics
Enhancement (SSE) module to improve the semantic discrim-
inability of the learned representation via an elaborate self-
supervised learning task. Extensive experiments on real-world
datasets demonstrate the effectiveness and superiority of ASA-
NPP over the state-of-the-art methods.

I. INTRODUCTION

In recent years, session-based recommendation has been

attracting increasing attention due to its important role in rec-

ommender systems that contain multitudes of anonymous user-

item interaction data [1]–[3]. Session-based recommendation

aims to predict next item that a user will interact with in

her ongoing session, where a session is a list of user-item

interactions that happen together in a certain period of time,

e.g., a basket of products purchased in one transaction or a set

of songs listened to in one hour [3].

Due to the highly practical value, a variety of approaches

have been proposed for session-based recommendation, where

the key challenge is how to infer a user’s short-term preference

carried in her current session by exploiting the observed
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historical anonymous sessions of all users. Most of early

studies employ Markov chain based models [4], [5], which

assume that a user’s next action is only dependent on her

previous one. Such an oversimplified assumption may impair

the recommendation performance due to its inability to cap-

ture long-range dependences which commonly exist in most

scenarios. Recently, inspired by the impressive power of deep

learning, many neural models have been proposed for session-

based recommendation, some of which apply Recurrent Neu-

ral Network (RNN) to capture the nonlinear dynamics of

sequential interactions [6]–[8], while some others model the

sequential dependence based on Convolution Neural Network

(CNN) [9], [10] or attention mechanism [11], [12]. How-

ever, these abovementioned models only focus on the item-

transitions within a single session, but fail to capture the cross-

session transitions. To address this issue, researchers propose a

large number of Graph Neural Network (GNN) based models

[1], [2], [13]–[15], which model pair-wise relations of items

embedded in session data with a graph and show a promising

potential in capturing high-order collaborative signals among

sessions. Although a significant progress has been made, these

GNN-based methods still have following two challenges.

• Semantic Consistency In order to infer the preference of

a target session, the existing GNN-based methods often

transfer the collaborative signals from other sessions via

anchor items (i.e., the items shared between sessions) and

learn the preference representation of the target session

by combining those of its neighbor sessions connected

via the anchor items, which underlyingly assumes that

the anchor items cause similar preferences of the sessions

connected by them [2], [14], [16], [17]. This assumption,

however, might become invalid in real world because it

overlooks the problem of an anchor item’s inconsistent

semantics in different sessions. Intuitively, due to the

functional diversity, an anchor item can play different

roles in the sessions of different purposes, which implies

that two sessions sharing items do not necessarily share

similar preferences. For example, in the left part of Fig.
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Fig. 1. Motivation example.

1, the milk, eggs, and jam are the anchor items shared

between Session 1 and Session 2, but serve different

purposes. In Session 1, they are parts of a breakfast, while

in Session 2, they serve as the ingredients of making

cakes. In such case, the existing methods will fail to infer

the preference of Session 1 based on that of Session 2 and

vice versa, since contrary to the assumption, the anchor

item with inconsistent semantics in the two sessions

carries no cross-session collaborative signals. In a worse

case, the anchor item is a popular item that frequently

appears in many sessions, resulting in false connections

between irrelevant sessions. As shown in the right part of

Fig. 1, the mineral water (anchor item) appears in Session

3 for snacks, while in Session 4 for buying furniture.

Again due to the inconsistent semantics of the anchor

item, the existing methods will conduct a negative transfer

of preference between the two irrelevant sessions.

• Semantic Discriminability While the existing GNN-

based models enjoy the benefit offered by the propaga-

tion of high-order collaborative signals across sessions,

they likely suffer from the problem of over-smoothing

incurred by the information propagation between high-

order neighbors [18], which will hurt the semantic dis-

criminability of the learned preference representations

of sessions and items, and consequently degenerate the

personalized recommendation. For example, as shown

in Fig. 1, the anchor items account for the majority

of both Session 1 and Session 2, but the two sessions

have different intents that are mainly determined by their

minority items, the toast in Session 1 and the flour and

sugar in Session 2, respectively. Reasonably, their learned

preference representations are supposed to be able to

discriminate their different semantics. However, after the

iterative information propagation of session to item and

item to session, the preference transfer via the anchor

items between Session 1 and Session 2 might cause

their preference representations to improperly converge

to indistinguishable vectors with little discriminant infor-

mation of session preference.

To solve the aforementioned challenges, we propose a

novel Anchor-Semantics-Aware Neural Preference Propaga-

tion (ASA-NPP) model for session-based recommendation.

The main idea of ASA-NPP is to simulate the transfer of the
cross-session collaborative signals with an anchor-semantics-
aware recursive neural propagation over a designed graph.

To address the semantic consistency challenge, we propose

a Session Graph with Anchor Links (SGAL) to model the

session data, where a node represents an appearance of an

item in a specific session, an edge exists between two nodes

if they are two item appearances in the same session or

two different appearances of the same item (anchor item)

in different sessions, and a session is a maximal clique

consisting of the appearances of different items. With the help

of SGAL, we can learn embeddings for items’ appearances

in sessions, not just items, due to which an anchor item

appearing in multiple sessions can possess multiple session-

specific embeddings encoding different session semantics. In

particular, for the transfer of the semantics-consistent cross-

session collaborative signals, we devise an Anchor-Semantics

Attention Network (ASAN) to realize the recursive neural

propagation over SGAL, which can learn an anchor item’s

session-specific embedding in a session with an attentional

aggregation of its session-specific embeddings in other ses-

sions with consistent semantics, while blocking those with

inconsistent semantics. The neural propagation conducted on

SGAL brings the benefit that the consistency of an anchor

item’s semantics in different sessions can be identified via its

anchor links (the edges connecting two different appearances

of the same item). Furthermore, to overcome the semantic
discriminability challenge, we propose a Session Semantics

Enhancement (SSE) module, by which ASA-NPP can improve

a session representation by preserving the discriminative in-

formation carried by the item that could reflect personalized

needs of the session user via an elaborate contrastive learning

task during training. The main contributions of this work can

be summarized as follows:

• We propose a novel Anchor-Semantics-Aware Neural

Preference Propagation (ASA-NPP) model for session-

based recommendation, which models the session data

with an elaborately designed Session Graph with An-

chor Links (SGAL), and can capture the cross-session

collaborative signals with a recursive neural preference

propagation over SGAL.

• We propose an Anchor-Semantics Attention Network

(ASAN) for ASA-NPP to realize the neural propagation

over SGAL. ASAN can identify the consistency of an an-

chor item’s semantics in different sessions, which makes

ASA-NPP to prefer the transfer of semantics-consistent

collaborative signals across sessions while restrain the

transfer of semantics-inconsistent ones.

• To improve the semantic discriminability of a session

representation, we propose a Session Semantics Enhance-

ment (SSE) module, which can preserve the discrimina-

tive information conveyed by the item that could reflect

personalized needs of the session user via an elaborate

contrastive learning task.

• The extensive experiments conducted on real-world

datasets demonstrate the superiority of the proposed

model over state-of-the-art models on session-based rec-

ommendation.

The rest of this paper is organized as follows. We introduce
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Fig. 2. The overview of the proposed model ASA-NPP.

the preliminaries in Section II. In Section III, we first give

an overview of ASA-NPP and then describe its details. We

empirically evaluate the performance of ASA-NPP over real-

world datasets in Section IV. At last, we briefly review the

related works in Section V and conclude in Section VI.

II. PRELIMINARY

A. Notations and Definitions

Let V = {v1, v2, . . . , vN} denote the set of N unique items

involved in all sessions. s = {v1,s, v2,s, . . . , v|s|,s} represents

an anonymous session s which is a subset of V , vi,s ∈ V
represents an interactive item vi of the user within the session

s, and the length of session s is |s|. The whole session set is

defined as S = {s1, s2, . . . , sM}, M is the number of sessions

in the system. Each item v and each session s can be described

with an embedding vector v ∈ R
d and s ∈ R

d, respectively,

and the representation of the whole item set is denoted as

V ∈ R
N×d.

B. Problem Statement

Given a session s, the aim of our model is to predict the

next interactive item v|s|+1,s of the current session s based on

the known sessions S . This problem can be formulated as a

top-K recommendation problem that the item v with a top-

K probability r̂s,v will be selected to the candidate set and

recommended to the user of the session s.

III. PROPOSED MODEL

A. Overview

Fig. 2 shows the overview of ASA-NPP, which mainly com-

prises four components: 1) Anchor-Semantics-Aware Neural

Preference Propagation (ASA-NPP) layer. It learns session-

specific embeddings for items’ appearances by employing an

Anchor-Semantics Attention Network (ASAN) and an Intra-

session Collaborative Attention Network (ICAN) to capture

the collaborative signals across and within sessions corre-

spondingly based on the Session Graph with Anchor Links

(SGAL). 2) session representation generation. It leverages the

attention mechanism to generate the session embeddings based

on universal item embeddings and session-specific embed-

dings, respectively, and then fusing them to obtain the final

session representation. 3) Session Semantics Enhancement

(SSE) module. It improves the semantic discriminability of

session representation by maximizing the mutual information

between representations of session and the most unique item

in the session. 4) prediction layer. It outputs the predicted

probability of items for recommendation.

For a given anonymous session s, the specific workflow is

as follows: Firstly, each item vi,s contained in the session

s is mapped to a node xv,s which represents the item’s

appearance specific to that session, then an Anchor-Semantics-

Aware Neural Preference Propagation is carried out on the

Session Graph with Anchor Links (SGAL) to learn the session-

specific embedding xv,s. After that, attention mechanisms

and a linear transformation are exploited to obtain session

representation s based on both universal item embeddings

and session-specific embeddings. Next, the mutual information

between representations of session and the most unique item

in the session is maximized so that the discrimination of

the final session representation s is improved. Finally, the

recommendation scores of items are generated.

B. Converting Sessions to Session Graph with Anchor Links

In order to model the diverse semantics of items across

sessions and preserve the personalization needs of session user,

we develop a Session Graph with Anchor Links (SGAL) to

depict the items’ appearances in sessions. Inspired by [19],

we construct a Session Graph with Anchor Links (SGAL)

G = (Vx, Ex) based on all sessions, where Vx is the node

set consisting of all items’ appearances in sessions, and two

nodes are connected if they are two item appearances in
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the same session or two different appearances of the same

item (anchor item) in different sessions. Each session is

modeled as a maximal clique consisting of the appearances

of different items. Formally, we denote an appearance of item

v in a specific session s as xv,s, where v ∈ V , s ∈ S .

G = (Vx, Ex), where Vx = {xv,s | v ∈ V and s ∈ S} and

Ex = {(xv,s, xv′,s′) | v = v′ or s = s′}. As illustrated in the

left part of Fig. 2, the constructed Session Graph with Anchor

Links (SGAL) contains two types of edges, the solid lines

depict the co-occurrence of items inside a session, while the

dashed lines, dubbed anchor links, present the cross-session

transitions. The anchor link can be considered as the channel

for the exchange of cross-session collaborative signals.

C. Anchor-Semantics-Aware Neural Preference Propagation

After transforming the all sessions to Session Graph with

Anchor Links (SGAL), we innovatively devise a new method

to simulate the transfer of collaborative signals, called Anchor-

Semantics-Aware Neural Preference Propagation (ASA-NPP),

to learn the session-specific embeddings for items’ appear-

ances based on the constructed graph. As presented in Fig. 2,

the Anchor-Semantics-Aware Neural Preference Propagation

(ASA-NPP) layer consists of three modules: an Anchor-

Semantics Attention Network (ASAN), an Intra-session Col-

laborative Attention Network (ICAN), and an aggregator.

The ASAN is responsible for capturing the cross-session

collaborative signals, while the ICAN takes charge of intra-

session collaborative signals collection. The aggregator fuses

the two types of collaborative signals and refines the session-

specific embeddings. Technically, the item embeddings V,

which is universal for all sessions, is mapped into session-

specific embeddings for items’ appearances by a projection

matrix P ∈ {0, 1}N ′×N , where N ′ is the number of all

items’ appearances and N is the item number. The element

of the projection matrix P represents the relationship between

the item and item’s appearance that if they are two different

appearances of the same item (anchor item) in different

sessions, then the element is set to one, otherwise zero. We

obtain the initial session-specific embeddings X(0) ∈ R
N ′×d

after the following projection:

X(0) = PV (1)

With the Session Graph with Anchor Links (SGAL),

the Anchor-Semantics-Aware Neural Preference Propagation

(ASA-NPP) learns the session-specific embeddings by incor-

porating cross-session collaborative signals with consistent

semantics, as well as intra-session collaborative signals. Note

that when capturing the collaborative signals, we take into

account the information of the item’s appearance itself, just

like adding the self-loop, which is generally used in the graph-

based model to prevent the loss of self-information.

1) Cross-session Collaborative Signal Capturing: To over-

come the semantic inconsistency problem during the process

of capturing collaborative signals across sessions, we propose

a novel Anchor-Semantics Attention Network (ASAN), which

is capable of aggregating semantics-consistent collaborative

Sem
antic 

D
iscrim

inator

Signal Filter

Signal A
ggregator

Semantics-Consistent 
Neighbor Set

( ,       )
0 / 1(0 , 1)

( ,       )

Fig. 3. Anchor-Semantics Attention Network (ASAN).

signals to learn more accurate session-specific embeddings.

As mentioned before, two sessions sharing items do not

necessarily share similar preferences, and the semantics of

anchor item in different sessions are not always consistent that

they may be irrelevant or even opposite, which may lead to

a negative transfer of preference. To tackle this problem, we

particularly focus on the anchor links since the cross-session

collaborative signals are delivered through the anchor links.

Instead of directly aggregating collaborative signals from the

sessions sharing items, we design a semantic discriminator and

a signal filter to select the truly relevant collaborative signals

as shown in Fig. 3. The semantic discriminator computes

the semantic consistency score between anchor items through

Euclidean distance. For a pair of anchor items (xv,s, xv,s′),

their semantic consistency score β
(l)
v,s′→v,s at l-th layer is

computed by:

β
(l)
v,s′→v,s = exp(−dE(x

(l−1)
v,s , x

(l−1)
v,s′ )) (2)

where dE = (·) represents the Euclidean distance between

xv,s and xv,s′ . Then, we adopt a threshold a to filter the

semantics-inconsistent collaborative signals and preserve the

really relevant one. For example, the semantic consistency

score β
(l)
v,s′→v,s is set to 0 when β

(l)
v,s′→v,s < 0.5, otherwise

one. β
(l)
v,s′→v,s = 0 indicates that the anchor link is broken so

as the semantics-inconsistent collaborative signals cannot be

transmitted. Formally, the signal filter can be defined as:

β
(l)
v,s′→v,s =

{
0 if β

(l)
v,s′→v,s < a

1 if β
(l)
v,s′→v,s ≥ a

(3)

After that, we select the anchor items whose

corresponding anchor links are retained to form the

semantics-consistent neighbor set of xv,s denoted as

N (l)(xv,s) =
{
xv,s′ | β(l)

v,s′→v,s > 0
}

. Subsequently, we

utilize self-attention mechanism to further distinguish the

importance of the cross-session collaborative signals from

each semantics-consistent neighbor and aggregate them

to obtain embedding y
(l)
v,s. Inspired by [20], we do not

use the feature transformation since each session-specific

embedding here only specifies to one item appearance and

we empirically find that including the feature transformation

not only increases the difficulty of training but also degrades

the recommendation performance. Thus, we implement the
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signal aggregator as follows:

y(l)
v,s =

∑
xv,s′∈N (l)(xv,s)

α
(l)
v,s′→v,sx

(l−1)
v,s′

α
(l)
v,s′→v,s = softmax(

(x
(l−1)
v,s′ )Tx

(l−1)
v,s√

d
)

(4)

where d is the dimension size. Different from directly using the

attention mechanism, we filter out the irrelevant collaborative

signals rather than just softly weaken their adverse effects to

make the learned representation more accurate. It is necessary

to remove the semantics-inconsistent collaborative signals for

learning high-quality embeddings, especially when most of

the collaborative signals transmitted are semantically irrelevant

that including them may be misleading.

2) Intra-session Collaborative Signal Capturing: To incor-

porate the intra-session collaborative signals, we devise an

Intra-session Collaborative Attention Network (ICAN). Since

the strengths of the collaborative signals between co-occurring

items in the session might be different, we exploit the attention

mechanism to pay various attention on different items and

highlight the informative collaborative signals. Similarly, we

do not utilize the feature transformation here. For each item’s

appearance xv,s, we aggregate the session-specific embeddings

of co-occurring items within session s to generate the embed-

ding z
(l)
v,s as follows:

z(l)v,s =
∑

xv′,s∈s

γ
(l)
v′,s→v,sx

(l−1)
v′,s

γ
(l)
v′,s→v,s = softmax(

(x
(l−1)
v′,s )Tx

(l−1)
v,s√

d
)

(5)

where d is the dimension size, and γ
(l)
v′,s→v,s indicates the

signal strength at l-th layer.

3) Session-specific Embedding Generation: Once both

kinds of collaborative signals are propagated, we update the

representation of each item appearance by integrating them.

The aggregator is implemented as follows:

x(l)
v,s = Wx(y

(l)
v,s ‖ z(l)v,s) (6)

where Wx ∈ R
d×2d is the learnable transformation matrix,

and ‖ denotes concatenation.

While a single Anchor-Semantics-Aware Neural Preference

Propagation (ASA-NPP) layer is capable of capturing col-

laborative signals that propagated via direct link, we stack

multiple layers to obtain multi-hop high-order collaborative

signals. After the anchor-semantics-aware recursive neural

propagation of all layers (L layers) is finished, we generate

the final session-specific embeddings by averaging the session-

specific embeddings obtained at each layer, which is defined

as X = 1
L+1

∑L
l=0 X

(l).

D. Session Representation Generation

As mentioned earlier, in order to better describe the items

and their dynamically changing semantics, we introduce two

kinds of embeddings for items in ASA-NPP model including

universal item embeddings and session-specific embeddings.

The universal item embeddings are commonly used by all

sessions, while the session-specific embeddings are tailored

for items’ appearances that are capable of depicting various

item semantics in different sessions. While the semantics of

item is changing, there are some characteristics of an item

may be retained and shared by all sessions [21], such as

the low-fat characteristic of milk, the less-sugar characteristic

of jam, etc. Hence, we take both universal item embeddings

and session-specific embeddings into consideration during ses-

sion representation generation. Specifically, we adopt attention

mechanism, which is able to automatically emphasize the

informative members’ embeddings in the current session, to

generate two kinds of session embeddings corresponding to

universal item embeddings and session-specific embeddings,

respectively, and then fusing them to obtain the final session

representation. For a session s, we aggregate the universal item

embeddings of items contained in that session to obtain the

session embedding suni as follows:

suni =
∑
v∈s

ηvsW
v
univ

ηvs = softmax(
(Wk

univ)
TWq

uni√
d

)

(7)

where Wq
uni ∈ R

d represents a trainable query vector,

Wk
uni ∈ R

d×d and Wv
uni ∈ R

d×d are the trainable trans-

formation matrices used to generate key vector and value vec-

tor, correspondingly. Meanwhile, we get the session-specific

embedding based session embedding sspe with:

sspe =
∑

xv,s∈s

μxsxv,s

μxs = softmax(
(xv,s)

TWq
spe√

d
)

(8)

where Wq
spe ∈ R

d is the trainable query vector. The feature

transformation of session-specific embeddings is omitted with

the same reason as before. According to observations in

previous studies [1], [2], [22], user’s behaviors in the short-

term sequence may not have strict chronological order and the

order of the interactive items is less likely to be related to the

user’s interests. Therefore, we do not take account of the order

information in session-based recommendation scenario, and

omit the position embedding while utilizing attention mecha-

nism. Afterwards, we generate the final session representation

s by taking linear transformation over the concatenation of

suni and sspe:

s = Ws(suni ‖ sspe) (9)

where Ws ∈ R
d×2d is a learnable matrix parameter.

E. Session Semantics Enhancement Module

In order to improve the semantic discriminability and

learn more discriminative session representation, we present

a contrastive learning task to encourage the learned session

representation to be mindful of the item that could reflect
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personalized needs of the session user by utilizing the mutual

information maximization (MIM) principle. For a session s,

we treat the item with the lowest popularity in the session as

the positive sample and make the session representation s and

the session-specific embedding of positive sample x+ closer.

On the other hand, we randomly select a popular item (the

number of sessions appeared ranked in the top 20%) that the

session user has not interacted with as a negative sample and

denoted its corresponding universal item embedding as v−.

The objective function of SSE module can be defined as a

standard binary cross-entropy (BCE) loss:

LMI = −
∑

s∈Strain

(log σ(D(s,x+) + log σ(1−D(s,v−))

(10)

where D(·) : R
d × R

d �→ R is the discriminator function

that takes two representations as input and then scores the

agreement between them. Here, we simply implement the

discriminator as dot product.

F. Prediction and Optimization

With the learned final session representation, we are able to

make recommendations by computing the preference scores

of session s on all of N items in the system. For each item

v ∈ V , we first compute the score by inner product:

r̃s,v = sTv (11)

Then, the predicted probability of the next item being item v,

r̂s,v , can be defined as:

r̂s,v =
exp(r̃s,v)∑

v′∈V exp(r̃s,v′)
(12)

We select the items with top-k probabilities as candidate items

and recommend to the user of session s.

Let rs,v denotes the ground truth, we formulate the learn-

ing objective of recommendation task as cross entropy loss

function:

LRec = −
∑

s∈Strain

N∑
v=1

rs,v log r̂s,v (13)

Finally, we combine the recommendation task and the con-

trastive learning task and jointly optimize them in an end-

to-end fashion. The overall objective function of ASA-NPP

model is defined as follows:

L = LRec + λ1LMI + λ2 ‖θ‖22 (14)

where λ1 is a hyper-parameter used to control the magnitude

of contrastive learning task, and λ2 is the coefficient of the L2

regularization on θ which is a set of the trainable parameters

of the proposed model.

TABLE I
STATISTICS OF THE USED DATASETS.

Dataset # of clicks # of sessions # of items average length

Diginetica 874,627 189,734 37,242 4.61
Nowplaying 1,699,693 369,889 59,647 4.60

IV. EXPERIMENTS

A. Experimental Setup

1) Datasets: We conduct experiments on real-word

datasets: Diginetica1 and Nowplaying2. Diginetica is a dataset

that comes from CIKM Cup 2016, which includes typical

transaction data extracted from e-commerce search engine

logs. Nowplaying is a dataset, which consists of music lis-

tening event of users.

Similar to the previous works [6], [22], [23], we first

perform data preprocessing on the datasets. Specifically, for

Nowplaying, we treat the user’s behaviors in a single day as a

session. For the both datasets, we remove sessions with more

than 20 or less than 2 items and filter out items appearing

less than 5 sessions. Furthermore, we sort the sessions in

chronological order and divide them into three parts, training

data, validation data and test data that account for 80%, 10%

and 10% respectively. Then, we filter out the items that do not

appear in the training set, and take the last item of the session

as the label for that session. The statistics of the datasets after

preprocessing are presented in Table I.

2) Baselines: To evaluate the performance of the proposed

ASA-NPP model, we compare it with traditional methods as

well as state-of-the-art deep learning methods.

• POP is a frequency based method, which recommends

top-K frequent items of the training set.

• Item-KNN [24] is a neighborhood based method that

computes the cosine similarity between items and rec-

ommends items similar to the previous items.

• FPMC [5] is a sequential method that combines the

matrix factorization with Markov Chain.

• GRU4Rec [6] is an RNN-based model that utilizes the

Gated Recurrent Unit (GRU) to model user sequences.

• NARM [8] exploits GRU with attention mechanism to

capture user’s sequential behavior and main purpose.

• STAMP [25] employs attention memory network to cap-

ture user’s general interest and current interest.

• SR-GNN [1] transforms sessions into directed un-

weighted graphs and applies gated graph neural networks

to learn item transitions.

• GCE-GNN [14] devises session graph and global graph

based on session data and employs session-aware atten-

tion mechanism and GNN to learn session-level item em-

beddings and global-level item embeddings respectively.

1https://competitions.codalab.org/competitions/11161
2https://dbis.uibk.ac.at/node/263#nowplaying
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• SHARE [22] converts each session to a hypergraph

and applies hypergraph attention networks to learn the

session-wise item embeddings.

• DHCN [2] constructs hypergraph and line graph based

on all sessions and exploits hypergraph convolutional

network and graph convolutional network to capture the

intra- and inter-session information.

• FMLP-Rec [26] is a recently proposed all-MLP model

with learnable filters which can adaptively attenuate the

noise information contained in user behavior data.

3) Evaluation Metrics: Following previous studies [1], [2],

[14], [22], we adopt the commonly used Hit Ratio (Hit@K)

and Mean Reciprocal Rank (MRR@K) as evaluation metrics.

4) Parameter Settings: Similar to [25], we apply extensive

grid search to find the optimal hyper-parameters by using

the validation set. The ranges of hyper-parameters for grid

search are the following: {16, 32, 64, 96, 128, 136, 144} for

embedding dimension size d, {0, 0.2, 0.4, 0.5, 0.6, 0.8, 1.0}
for the threshold of semantics-inconsistent collaborative

signal filtering a, {0, 0.001, 0.005, 0.01, 0.02, 0.05, 0.1, 0.5}
for the magnitude of contrastive learning task λ1, and

{0.0001, 0.0005, 0.001, 0.005, 0.01, 0.05, 0.1} for learning

rate. Furthermore, the batch size and the L2 penalty is

set to 64 and 10−5 respectively. For fair comparison, the

hyper-parameters of the baselines are set to the optimal

values reported in the original papers and then fine-tuned on

validation sets to ensure the best performance of baseline

models. Note that the ASA-NPP is a graph-based transductive

learning model. We need to input the entire graph including

unlabeled validation data and test data, hence the complexity

of ASA-NPP is positively related to the total number of

user-item interactions contained in the dataset.

B. Performance Comparison

The experimental results of all methods are reported in Table

II, from which we can draw the following observations.

The performance of traditional methods (i.e., POP,

ItemKNN and FPMC) are not competitive in most cases, since

they make the recommendation solely based on the frequency,

similarity or adjacent items’ transition, without considering the

complex transitions across and within sessions.

Most of the neural network based methods achieve better

performance compared with traditional methods, proving the

superiority of deep neural network in modeling complex

dependencies embedded in session data. Generally, the RNN-

based methods (i.e., GRU4Rec and NARM) less competi-

tive than GNN-based methods, because they only consider

the sequential transitions of adjacent items within a session

and ignore that over all sessions. STAMP yields competitive

performance as it applies the attention mechanism and is

more sensitive to user’s true interests. FMLP-Rec, an all-

MLP model, also achieves impressive results, since it applies

learnable filters which can attenuate the effects of noise in-

formation contained in session. Both STAMP and FMLP-Rec

demonstrate the importance of emphasizing the informative

items in a session.

GNN-based methods (i.e., SR-GNN, GCE-GNN, SHARE

and DHCN) show promising results and generally outperform

other methods, especially on Nowplaying. This can be at-

tributed to the great ability of GNN to model the complex item

transitions. On the whole, the DHCN is the strongest baseline,

which indicates the necessity of capturing both intra- and inter-

session information. Although GCE-GNN exploits the item

transitions over all sessions, it does not yield competitive per-

formance. One possible reason is that GCE-GNN only models

a part of item’s global-level item transitions. In some cases,

SHARE achieves competitive performance, despite it ignores

the fertile cross-session collaborative signals, suggesting the

importance of considering item’s dynamic semantics.

The proposed ASA-NPP consistently outperforms all base-

lines under each of metrics on both datasets, which demon-

strates the effectiveness and superiority of ASA-NPP in im-

proving session-based recommendation. The ASA-NPP takes

semantics consistency into account instead of accepting all

collaborative signals in generalities, while capturing cross-

session collaborative signals. Additionally, it employs con-

trastive learning to further enhance the semantic discriminabil-

ity and personalization of the learned session representation.

C. Ablation Studies

To verify the effectiveness of each module in ASA-NPP,

we conduct an ablation test with four variants of ASA-NPP

on Diginetica and Nowplaying. ASA-NPP-w/o-suni and ASA-

NPP-w/o-spe represent the version without using the universal

item embeddings and session-specific embeddings, respec-

tively. ASA-NPP-w/o-filtering directly aggregates all collabo-

rative signals from the overlapping sessions without filtering.

ASA-NPP-w/o-sse removes Session Semantics Enhancement

(SSE) module. Table III shows the performance of ASA-NPP

and its different variants. Due to the space limitation, we only

report the Hit@10 and MRR@10 results. From Table III, we

can observe that ASA-NPP outperforms all of its variants,

proving the effectiveness of each component of ASA-NPP.

Comparing with ASA-NPP-w/o-suni and ASA-NPP-w/o-

spe, ASA-NPP takes account of both universal item em-

beddings and session-specific embeddings while generating

session representation. This indicates the necessity of carrying

out the learning of both kinds of embeddings. Additionally,

we find that the contributions of these two parts are vary

according to the dataset. Although removing any of these

two parts causes performance degradation, the Nowplying is

more sensitive to session-specific embedding which results in

a larger performance drop without considering it.

When removing the semantic discriminator and signal fil-

ter, the ASA-NPP-w/o-filtering directly aggregates all cross-

session collaborative signals without judging their semantics

similarity, which degrades the performance. This verifies the

validity of doing filtering and illustrates the importance of

incorporating semantics-consistent collaborative signals.

The ASA-NPP-w/o-sse presents worse performance com-

pared with ASA-NPP, which shows the effectiveness of con-

trastive learning in session semantics enhancement.
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TABLE II
PERFORMANCE OF DIFFERENT MODELS ON REAL-WORLD DATASETS WITH % OMITTED. THE BEST AND THE SECOND BEST RESULTS ARE HIGHLIGHTED

IN BOLDFACE AND UNDERLINE RESPECTIVELY. * DENOTES THE IMPROVEMENTS OVER THE STRONGEST BASELINE ARE STATISTICALLY SIGNIFICANT (P

< 0.05) WITH PAIRED T-TESTS.

Method
Diginetica Nowplaying

Hit@5 Hit@10 Hit@20 MRR@5 MRR@10 MRR@20 Hit@5 Hit@10 Hit@20 MRR@5 MRR@10 MRR@20

POP 1.1948 2.2760 3.7263 0.5325 0.6870 0.7843 2.9508 5.4182 8.2322 2.1302 2.4455 2.6293
ItemKNN 5.3901 6.4935 7.8211 5.2794 5.4237 5.5162 1.9340 2.4784 3.0765 1.7986 1.8638 1.9225
FPMC 18.4017 27.8155 36.8908 10.2859 11.5451 12.1916 8.2460 9.6231 11.4392 5.6861 5.8619 5.9850
GRU4Rec 9.7548 15.3578 22.1929 5.0507 5.7931 6.2566 5.7029 7.2593 9.1907 3.9614 4.1470 4.2876
NARM 11.1373 13.5376 16.8837 7.0420 7.3577 7.5898 7.5281 9.1240 9.9624 6.1278 6.3376 6.3903
STAMP 21.5917 31.3495 40.2390 11.8890 13.1951 13.7927 5.7595 7.2158 8.8632 4.2430 4.4385 4.5508
SR-GNN 16.1767 20.6023 24.8750 9.7326 10.3414 10.6275 8.2357 10.0686 11.5934 6.2777 6.5072 6.6129
GCE-GNN 14.7722 18.1910 21.7436 7.4163 7.8586 8.1001 9.6147 11.4772 13.2665 6.0156 6.2557 6.3774
SHARE 20.1835 23.7611 29.4085 12.4385 12.9062 13.2905 9.8622 11.4856 13.5843 7.4420 7.6476 7.8026
DHCN 26.9968 33.9009 39.8499 16.3270 17.2688 17.6852 10.1210 12.1791 15.5601 6.4557 6.7290 6.9674
FMLP-Rec 16.0286 20.9033 26.2454 9.5011 10.1584 10.5375 6.4516 8.0245 9.9505 4.3640 4.5606 4.6969

ASA-NPP 29.9482* 38.4893* 48.1133* 17.5490* 18.7031* 19.3640* 11.8340* 14.4133* 17.0365* 8.1057* 8.4426* 8.6131*
Improv. (%) 10.9324 13.5347 19.5688 7.4845 8.3057 9.4927 16.9252 18.3445 9.4884 8.9183 10.3954 10.3876

TABLE III
ABLATION TEST RESULTS WITH % OMITTED. THE BEST RESULT IN EACH

COLUMN IS BOLDFACED.

Method
Diginetica Nowplaying

Hit@10 MRR@10 Hit@10 MRR@10

ASA-NPP 38.4893 18.7031 14.4133 8.4426
ASA-NPP-w/o-suni 36.1618 16.9904 11.1779 6.8231
ASA-NPP-w/o-spe 37.5272 16.9877 12.3776 7.4539
ASA-NPP-w/o-filtering 36.9915 17.1460 12.9415 7.5467
ASA-NPP-w/o-sse 37.2897 17.6010 13.0809 7.5666

D. Hyper-parameter Study

In this subsection, we further study how the threshold of

filter a, the magnitude of contrastive learning task λ1 and the

embedding size d influence the performance of ASA-NPP.

Effect of Filter Threshold. To investigate the im-

pact of semantics-inconsistent collaborative signal filter-

ing, we set the threshold of filter a in the range of

{0, 0.2, 0.4, 0.5, 0.6, 0.8, 1.0}. The experimental results are

demonstrated in Fig. 4, from which we can observe that

setting an appropriate threshold of filter can improve the

performance of ASA-NPP. Increasing the filter threshold does

not always result in a better performance, since the larger the

threshold a, the greater the possibility of erroneously filtering

out the relevant collaborative signals. For Diginetica, the best

performance of ASA-NPP on both Hit@10 and MRR@10 is

achieved while setting a to 0.4. On Nowplaying, ASA-NPP

yields best Hit@10 result and MRR@10 result with a as 0.8

and 0.5, respectively.

Effect of Contrastive Learning. To explore how the

contrastive learning affects the performance of ASA-NPP, we

tune the magnitude of the contrastive learning task λ1 in

{0, 0.001, 0.005, 0.01, 0.02, 0.05, 0.1, 0.5} and plot the results

in Fig. 5. From Fig. 5, we can see that the performance of

ASA-NPP improved while increasing the value of λ1, and

dropped after reaching to a peak in a relatively small value of
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Fig. 4. Performance of ASA-NPP with respect to various filter thresholds.
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Fig. 5. Effect of Contrastive Learning.

λ1. This indicates that the recommendation task is sensitive

to the magnitude of the contrastive learning task, even setting

it to a small value can boost the performance. However, the

performance declines with larger λ1.

Effect of Embedding Size. To study the influence of em-

bedding size d, we range it in {16, 32, 64, 96, 128, 136, 144}.

As showed in Fig. 6, with the increase of embedding size, the

performance of the model first improves and then decreases.

The reason is that a small embedding size may limit the

learning capacity of model, and a large embedding size may

cause model overfitting. Increasing the embedding size does

not always result in a performance improvement.
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Fig. 6. Performance of ASA-NPP with respect to different embedding sizes.

Fig. 7. t-SNE visualization of the learned session-specific embeddings for
items’ appearances in three sessions randomly sampled from Diginitica.

E. Case Study

To show the benefits of performing session-specific em-

bedding learning with the help of SGAL, i.e., preventing

preference negative transfer between irrelevant sessions, we

visualize the learned session-specific embedding for items’

appearances from three sampled sessions using t-SNE in Fig.

7. Specifically, items appearing in sessions with the same next

item are considered to have similar semantics. We randomly

select three sessions that all contain Item 93. Among them,

two sessions (Session 1971 = {282, 514, 618, 93} and Session

1779 = {236, 93, 282}) with same next item (Item 234)

have similar semantics, and the remaining session (Session

401 = {93, 793, 769}) has different next item (Item 763). The

session-specific embeddings of Item 93 in three sessions are

marked with different shape. From Fig. 7, we can observe

that the distribution of anchor item Item 93’s session-specific

embeddings is relatively decentralized and the embeddings

of Item 93 in Session 1971 and Session 1779 are situated

closer, while the embedding of Item 93 in Session 401 is

far from them. Hence, the collaborative signals from Session

1779 can be passed to Session 1971 and those from Session

401 are blocked. By exploiting session-specific embeddings,

we are able to depict and distinguish various semantics of an

item appeared in different sessions and block the cross-session

collaborative signals with inconsistent semantics, which can

help to prevent a preference negative transfer between ir-

relevant sessions and improves the accuracy of the learned

representation.

V. RELATED WORK

A. Session-based Recommendation
The early studies of session-based recommendation mostly

utilize shallow machine learning techniques including neigh-

borhood based methods [27], matrix factorization based meth-

ods [28], [29], and Markov chains based methods [4], [5]. With

the advancement of deep neural networks, many deep learning

methods such as RNN-based methods [6]–[8], CNN-based

methods [9], [10], and attention mechanism based methods

[11], [12] have been proposed for session-based recommenda-

tion and achieved promising results.
Recently, GNN-based approaches become popular in

session-based recommendation since GNN have a great ability

to model the complex transitions embedded in session graph

data [3]. SR-GNN [1] is the pioneering work which models the

session sequences as directed session graphs and applies the

gated GNN based on that. Following the success of SR-GNN,

GC-SAN [13] utilizes both GNN and self-attention mechanism

to capture local and long-range dependencies respectively.

In order to exploit cross-session collaborative signals, some

works take account of the other sessions when constructing

session graph. GCE-GNN [14] learns session-level and global-

level item embeddings by employing attention mechanism

and GNN on session graph and global graph. DHCN [2]

adopts hypergraph and line graph to capture intra- and inter-

session information separately. However, the existing methods

suffer from a drawback that they all neglect the semantic

inconsistency problem, which may result in a preference

negative transfer and reduce the accuracy of recommendation.

Different from existing works, our proposed model is able to

judge the semantics similarity of cross-session collaborative

signals and integrate the relevant one, while blocking those

with inconsistent semantics.

B. Contrastive Learning for Recommendation
Contrastive learning aims to learn high-quality representa-

tions by making comparison with positive and negative sam-

ples in self-supervised manner [30]. Recent works introduce

contrastive learning to recommender system [31]–[33]. S3-

Rec [31] utilizes the mutual information maximization (MIM)

principle to learn the correlations among attribute, item, subse-

quence, and sequence for sequential recommendation. In order

to construct samples for comparison, CL4Srec [32] uses three

data augmentation approaches (crop, mask, and reorder) to

obtain different views of user interaction sequences. Similarly,

SGL [33] applies three operators (node dropout, edge dropout,

and random walk) on user-item graph to generate multiple

views of a node and then exploits contrastive learning to

improve node representation learning. SGL is the most relevant

work to our model, which utilizes the augmentation operators

to mitigate the influence of high-degree nodes and improve

self-discrimination. However, the proposed augmentation op-

erators of SGL is not applicable to session-based recommenda-

tion since the dropout operator may further aggravate the data

sparsity problem of session data. Unlike it, we use an elaborate

sampling strategy rather than change the original session data.
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VI. CONCLUSION

In this paper, we propose a novel Anchor-Semantics-Aware

Neural Preference Propagation (ASA-NPP) model for session-

based recommendation, which is able to capture semantics-

consistent collaborative signals across sessions and learn more

accurate and personalized representations. ASA-NPP models

the session data with an elaborately designed Session Graph

with Anchor Links (SGAL) and exploits an Anchor-Semantics

Attention Network (ASAN) on it to incorporate semantics-

consistent collaborative signals for session-specific embedding

learning. To enhance the semantic discriminability, a Session

Semantics Enhancement (SSE) module is designed to preserve

the discriminative information. Comprehensive experiments on

real-world datasets demonstrate the effectiveness and superi-

ority of ASA-NPP in session-based recommendation.
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