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Abstract—Explainable recommendation is far from being well
solved partly due to three challenges. The first is the person-
alization of preference learning, which requires that different
items/users have different contributions to the learning of user
preference or item quality. The second one is dynamic expla-
nation, which is crucial for the timeliness of recommendation
explanations. The last one is the granularity of explanations.
In practice, aspect-level explanations are more persuasive than
item-level or user-level ones. In this paper, to address these
challenges simultaneously, we propose a novel model called
Hybrid Deep Embedding (HDE) for aspect-based explainable rec-
ommendations, which can make recommendations with dynamic
aspect-level explanations. The main idea of HDE is to learn the
dynamic embeddings of users and items for rating prediction
and the dynamic latent aspect preference/quality vectors for
the generation of aspect-level explanations, through fusion of
the dynamic implicit feedbacks extracted from reviews and
the attentive user-item interactions. Particularly, as the aspect
preference/quality of users/items is learned automatically, HDE
is able to capture the impact of aspects that are not mentioned
in reviews of a user or an item. The extensive experiments
conducted on real datasets verify the recommending performance
and explainability of HDE. The source code of our work is
available at https://github.com/lola63/HDE-Python.

Index Terms—Explainable Recommendation, Aspect-Level Ex-
planation, Deep Embedding, Attention Network, LSTM

I. INTRODUCTION

Explainable recommendation, which aims at making rec-

ommendations of items to users with the explanations why

the items are recommended, has been attracting increasing

attention of researchers due to its ability to improve the effec-

tiveness, persuasiveness, and user satisfaction of recommender

systems [25]. Although quite a few works have been proposed,

explainable recommendation is still far from being well solved

partly due to the following challenges:

• Personalization of Preference Learning The existing

methods for explainable recommendation often assume

different items have equal impact on a user preference.

In practice, however, different items likely have different

contributions to the learning of the preference of the same

user. For example, a popular item reveals less information

about the personal preference of a user than unpopular

items liked by that user. Similarly, users who interact

with the same item also have different contributions to
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the learning of the representation of that item. There-

fore, we need a scheme to capture the differentiation of

items/users when learning the representation (embedding)

for a specific user/item.

• Dynamic Explanation User preference often changes

over time [7]. For example, one user might like fash-

ions before having children, while after having children,

she/he likely pays much more attention to baby products.

The time-evolving preference of users suggests that to

make the recommendation more proper for the occasion, a

reasonable explanation for recommendations should take

into consideration the dynamics of the user preference.

• Aspect-Level Explanation The existing explainable rec-

ommendation methods often generate the reason why a

recommendation is made based on similarities between

users or items, which leads to explanations such that

”users who are similar to you like the item”, or ”this

item is similar to the items you like” [17], [19]. In fact,

finer-grained explanations are likely more convincing, for

example, the aspect-level explanations such that ”we rec-

ommend this movie to you because its topic matches your

taste”. However, it is not easy to capture aspect preference

of users due to the sparsity of implicit feedbacks. The

existing works often characterize the aspect preference

for a specific user and aspect quality for a specific item

through a counting based approach [26], where only the

aspects mentioned by reviews specific to that user or item

are taken into account. In the real world, however, the

aspects even though not mentioned in the user reviews

not necessarily have no impact on user decision making.

In this paper, to address the above challenges simultane-

ously, we propose a novel model called Hybrid Deep Embed-

ding (HDE) for aspect based explainable recommendation. The

main idea of HDE is to learn the dynamic embeddings of users

and items for rating prediction and the dynamic aspect prefer-

ence/quality vectors for the generation of dynamic aspect-level

explanations, through fusion of the dynamic implicit feedbacks

extracted from reviews and the attentive user-item interactions.

First, to address the challenge of personalization of pref-

erence learning, we introduce two Personalized Embeddings

(PE), to represent the personalization of users and items, re-

spectively. PEs are learned with attention network and encode
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the different contributions of different items to the embedding

of a user (PE of user) and the different contributions of

different users to the embedding of an item (PE of item).

Second, to address the challenge of dynamic explanation, we

also introduce two Temporal Embeddings (TE), which are

learned with LSTM [9] based network to model the sequential

reviews involving a specific user (by TE of user) and those

involving a specific item (by TE of item). As intermediate

embeddings, PE and TE encode the personalized information

and the dynamics of the preferences of users and items,

respectively. By fusing the learned PEs and TEs, HDE will

generate the final embeddings of users and items that are

used to predict the ratings. Finally, in order to generate the

dynamic aspect-level explanations for recommendations, we

introduce an encoder-decoder based network by which HDE

can automatically learn Aspect Preference Vectors (APV) for

users and Aspect Quality Vectors (AQV) for items. APVs

and AQVs can capture user preference to and item quality

on aspects, respectively, even for those aspects that are not

mentioned in the reviews of a specific user or item. Our main

contributions are summarized as follows:

• We propose a novel model called Hybrid Deep Embed-

ding (HDE) for aspect based explainable recommenda-

tions. By capturing dynamic personalized preferences of

users to items, HDE can make recommendations with

dynamic aspect-level explanations.

• We propose a hybrid embedding approach to learn the

representations of users and items for rating prediction

as well as the APVs and AQVs for dynamic aspect-level

explanations.

• The extensive experiments on real datasets verify the

recommending performance and explainability of HDE.

II. PRELIMINARIES AND PROBLEM FORMULATION

A. Basic Definitions

Let U be the set of N users, and V the set of M items.

Let R ∈ R
N×M be the rating matrix where cell at u-th row

and v-th column, R(u, v), represents the rating score given by
user u to item v.
We associate each user u ∈ U with a user implicit feed-

back vector u ∈ {0, 1}M where v-th component u(v) = 1
if there exists an implicit feedback of u to item v and

u(v) = 0 otherwise. Here the term implicit feedback refers

to user actions such as watching videos, purchasing products,

and clicking items, while explicit feedback particularly refers

to ratings users give to items. Similarly, we also associate

each item v ∈ V with an item implicit feedback vector

v ∈ {0, 1}N where u-th component v(u) = 1 if there exists
an implicit feedback to item v given by user u and v(u) = 0
otherwise.

For a user u, we pre-train a sequence of user review em-

beddings 〈e(u,1), . . . , e(u,T )〉, where T is the maximal number
of time steps considered in this paper, and e(u,t) ∈ R

de

(1 ≤ t ≤ T ) is the paragraph vector pre-trained from the

review texts issued by user u at time step t. Here de is the
dimensionality specified in advance for the pre-training of the

user review vectors. We argue that the review embeddings

can encode the information about the latent preference of

users to the aspects of items as the reviews issued by users

often contain the text mentioning the aspects. For example,

the sentence ”the color of this cup is nice” mentions the

aspect ”color” of the item cup. Similarly, for an item v,
we also pre-train a sequence of item review embeddings

〈g(v,1), . . . , g(v,T )〉, where g(v,t) ∈ R
dg (1 ≤ t ≤ T ) is the

paragraph vector pre-trained from the review texts mentioning

v at time step t. And again, dg is also the dimensionality
specified in advance for the pre-training of the item review

embeddings. In this paper, we choose the method proposed

in [12] to pre-train the review embeddings for its simplicity.

However, one can note that there are many qualified paragraph

embedding methods that can also serve our purpose.

As we will see later, the aspect-level explanations of rec-

ommendations will be generated based on the learned user

aspect preference vectors and item aspect quality vectors. The

user aspect preference vector of user u at time step t is
denoted by p(u,t) ∈ R

f , where f is the number of aspects
considered. The i-th component of p(u,t), p(u,t)(i), represents
the overall preference of user u to aspect i at t. Similarly, the
item aspect quality vector of item v at time step t is denoted
by q(v,t) ∈ R

f , where i-th component q(v,t)(i) represents the
overall preference to aspect i received by item v at t.

B. Problem Formulation

Given a user implicit feedback vector u, an item implicit

feedback vector v, the user review embeddings 〈e(u,1), . . . ,
e(u,T )〉, and the item review embeddings 〈g(v,1), . . . , g(v,T )〉,
we want to predict the rating given by user u to item v,
R(u, v), and generate the aspect preference vector p(u) =
p(u,T ) and aspect quality vector q(v) = q(v,T ) for user u and
item v, based on which the aspect-level explanations can be
produced for the recommendation of v to u.

III. HYBRID DEEP EMBEDDING

A. Architecture of HDE

The architecture of HDE is shown in Figure 1. Given a

user u and item v, HDE will produce the prediction of the
rating R̂(u, v) given by user u to v by fusing the learned user
embedding x(u) and item embedding y(v), and at the same

time, generate the explicit aspect preference vector p(u) and

aspect quality vector q(v) used for the generation of aspect-

level explanations. As we can see from Figure 1, HDE can

be roughly divided into two symmetric parts, left part and

right part. The left part is responsible for learning the user

embedding x(u) and user aspect preference vector p̂(u), while

the right part for learning the item embedding y(v) and item

aspect quality vector q̂(v).

In the left part, to learn the user embedding x(u), HDE first

generate two intermediate embeddings for a user, one is the

user personalized embedding x′(u) and the other is the user

temporal embedding h(u). The user personalized embedding
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Fig. 1. The architecture of HDE.

x′(u) is generated by the User Personalized Embedding (UPE)

component taking the user implicit feedback vector u as

input. As we will see later, thanks to the attention network

in the UPE, the generated user personalized embedding x′(u)

can capture the different contributions of different items to

a specific user, which is crucial for the personalization of

preference learning of HDE. At the same time, HDE will

generate the user temporal embedding h(u) through the User

Temporal Embedding (UTE) component. UTE is an LSTM-

based network with the sequence of the pre-trained user review

embeddings 〈e(u,1), . . . , e(u,T )〉 as input. Here we can regard
UTE as an encoder which encodes the dynamic aspect infor-

mation from the reviews into the user temporal embedding

h(u). At last, HDE will generate the user embedding x(u) by

fusing the two intermediate embeddings x′(u) and h(u). We

argue that x(u) encodes not only the information about the

user personalized preference but also the information about

the dynamics of the user preference. One can also note that

the user temporal embedding h(u) is also fed into the User

Aspect Preference Learning (UAPL) component, which is a

fully connected network and can be regarded as a decoder

corresponding to UTE, to produce the explicit user aspect

preference vector p̂(u) where each dimension represents an

aspect.

Symmetrically, in the right part, for an item v, HDE also
generates two intermediate embeddings, the item personalized

embedding y′(v) and the item temporal embedding k(v),

through the Item Personalized Embedding (IPE) component

and the Item Temporal Embedding (ITE) component, respec-

tively, and then produce the item embedding y(v) by fusing

them. At the same time, HDE also generate the explicit aspect

quality vector q̂(v) through the Item Aspect Quality Learning

(IAQL) component. Note that IPE, ITE, and IAQL are the

counterparts of UPE, UTE, and UAPL, except that the input

of ITE is the item implicit feedback vector v and the input of

ITE is the item review embeddings 〈g(v,1), . . . , g(v,T )〉.

B. Personalized Embedding
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Fig. 2. Personalized Embedding.

The goal of UPE and IPE is to capture the personalized

preference of users offered to items, and the personalized

preference of items received from users, to generate the

personalized embeddings x′(u) ∈ R
dp and y′(v) ∈ R

dp ,

respectively, where dp is the dimensionality of the personalized
embedding. Due to the symmetry, here we just describe UPE

in detail and IPE has the similar structure.
Intuitively, the personalized preference of a user to items

is indicated by her/his interactions with items, which are

represented by the user implicit feedback vector u. Let J(u)
be the set of items interacted with user u. Then the v-th
component u(v) = 1 if v ∈ J(u), otherwise u(v) = 0.
However, it is reasonable that different items have different

contributions to the user personalized preference. To capture

such difference, we introduce an attentional network to the

UPE, whose structure is shown in Figure 2. For each item

v ∈ J(u), HDE represents it with an item latent vector

γ(v) ∈ R
dγ , where dγ is the dimensionality. According to

Figure 2, the user personalized embedding x′(u) is calculated

as:

x′(u) =
∑

v∈J(u)

α(u,v)γ(v), (1)
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Fig. 3. Temporal Embedding and Aspect Preference Learning.

where α(u,v) is the attention score, which can be interpreted

as the contribution of item v to user u. The attention score is
calculated as follows:

α(u,v) =
exp (s′(v))

∑

v∈J(u) exp (s
′(v))

, (2)

s′(v) = sT tanh(W sγ
(v) + bs), (3)

where s ∈ R
da is the query vector of dimensionality da

specified in advance. Note that in Equations (1), (2), and (3),

γ(v), s ∈ R
da , W s ∈ R

da×dγ , and bs ∈ R
da will be learned

during the model learning.

Symmetrically, IPE has the similar structure with UPE. Let

Q(v) be the set of users who have interacted with item v. Then
the u-th component of the item implicit feedback vector v,

v(u) = 1 if u ∈ Q(v), otherwise v(u) = 0. For a user u, HDE
also represents it with a user latent vector µ(u) ∈ R

dγ . Then

the personalized embedding of item v, y′(v), can be calculated
as:

y′(v) =
∑

u∈Q(v)

β(v,u)µ(u), (4)

where β(v,u) is the attention score of user u to item v. Simi-
larly, β(v,u) can be obtained through the following equations

which are similar to Equations (2) and (3):

β(v,u) =
exp (r′(u))

∑

u∈Q(v) exp (r
′(u))

, (5)

r′(u) = rT tanh(W rµ
(u) + br), (6)

where r ∈ R
da is the query vector. Similarly, in Equations

(4), (5), and (6), µ(u), r, W r ∈ R
da×dr , and br ∈ R

da will

also be learned during the model learning.

C. Temporal Embedding

As shown in the bottom part of Figure 3, UTE is an

LSTM based network, by which the dynamic aspect-level

preference hidden in the sequence of review embeddings

(e(u,t), 1 ≤ t ≤ T ) can be encoded into the user temporal
embedding h(u,t) ∈ R

dt for some user u, where dt is the
dimensionality of temporal embedding. Again due to the

symmetry, with the similar structure ITE can take the sequence

Fig. 4. LSTM.

of review embeddings (g(v,t), 1 ≤ t ≤ T ) and generate the
item temporal embedding k(v,t) ∈ R

dt for some item v.
Figure 4 shows the detail of an LSTM unit by which a user

temporal embedding h(u,t) can be produced via the following

equations:

f (u,t) = σ(W f · [h
(u,t−1), e(u,t)] + bf )

i(u,t) = σ(W i · [h
(u,t−1), e(u,t)] + bi)

c̃(u,t) = tanh(W c · [h
(u,t−1), e(u,t)] + bc)

c(u,t) = f (u,t) ∗ c(u,t−1) + i(u,t) ∗ c̃(u,t)

o(u,t) = σ(W o · [h
(u,t−1), e(u,t)] + bo)

h(u,t) = o(u,t) ∗ tanh c(u,t),

(7)

where f (u,t), i(u,t), and o(u,t) denote forget gate, input gate,

and output gate, respectively, and c(u,t) is the cell activation

vector. W f , W i, W c, W o ∈ R
dt×(dt+de), bf , and bi, bc,

bo ∈ R
dt are the parameters that will be learned during the

model training. Note that ITE has the same structure as UTE

except that ITE has its own parameters and takes sequence of

review embeddings g(v,t) as input.

D. Aspect Preference/Quality Learning

As the user temporal embeddings h(u,t) and item temporal

embeddings k(v,t) carry the latent dynamic aspect-level pref-

erence hidden in reviews, they will be fed into their respective

decoders, the user aspect preference learning (UAPL) and the

item aspect quality learning (IAQL), to produce the explicit

user aspect preference vector p̂(u,t) ∈ R
f and item aspect

quality vector q̂(u,t) ∈ R
f , respectively, where f is the number

of aspects. The user aspect preference vectors and the item

aspect quality vectors will be further used to generate the

aspect-level explanations for a recommendation.

UAPL and IAQL are both a fully connected network, which

can generate the user aspect preference vector p̂(u,t) ∈ R
f for

a user u and item aspect quality vector q̂(v,t) ∈ R
f for an

item v respectively using the equation

p̂(u,t) = σ(W p · h
(u,t) + bp) (8)

and equation

q̂(v,t) = σ(W q · k
(v,t) + bq), (9)
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whereW p,W q ∈ R
f×dt and bp, bq ∈ R

f are the parameters

to be learned.

E. Rating Prediction

Now we have produced two intermediate embeddings, per-

sonalized embedding and temporal embedding, for a user u
and an item v. The personalized embeddings x′(u) and y′(v)

capture the attentional personalized preference of user u giving
to different items and the attentional personalized preference

of item v receiving from different users, respectively, while

the temporal embeddings h(u) = h(u,T ) and k(v) = k(v,T )

encode the dynamic aspect preference information of user u
and item v, respectively.
In order to fuse the personalized preference and the dynamic

aspect preference simultaneously, HDE will generate the final

user embedding x(u) and the final item embedding y(v) for a

user u and an item v with the following equations, respectively,

x(u) = x′(u) ⊕ h(u), y(v) = y′(v) ⊕ k(v), (10)

where ⊕ is concatenation operator, and x(u), y(v) ∈ R
dp+dt .

Finally, HDE will predict the rating of user u to item v,
R̂(u, v), via a simple Neural Collaborative Filtering (NCF)
model, i.e.,

R̂u,v = φ(W φ(x
(u) ⊙ y(v)) + bφ), (11)

where ⊙ represents the element-wise product of vectors, φ(·)
is the ReLU function, and W φ ∈ R

dφ×(dp+dt), bφ ∈ R
dp+dt

are the parameters to be learned.

F. Model Training

Let Itrain be the training set consisting of user-item pairs

(u, v) where u ∈ U and v ∈ V . Then the loss function for

HDE learning is

L =
∑

(u,v)∈Itrain

{

(R̂(u, v)−R(u, v))2

+ λ1

T
∑

t=1

[(p̂(u,t) − p(u,t))2 + (q̂(v,t) − q(v,t))2]
}

+ λ2Lreg.

(12)

where R(u, v) is the ground-truth of the rating, and λ1 and λ2

are hyper-parameters that regulate the contribution of different

terms to the loss. Lreg is the regularization term which uses

L2-norm for all parameters to avoid overfitting.

In Equation (12), p(u,t) and q(v,t) are the supervisions

of user explicit aspect preference vectors and item explicit

aspect quality vectors, respectively, which are obtained with

the method proposed by [26]. Particularly, the preference to

aspect i of user u at time t, p(u,t)(i), is computed with the
following equation [26]:

p(u,t)(i) =















0, if user u does not mention aspect i

until time t

1 + (a− 1)(
2

1 + e−n
(u,t)
i

), otherwise,

(13)

where a is the maximum value that a rating can be (usually

a = 5), and n
(u,t)
i is the total number of times that user

u mentions aspect i till t. The idea here is that the more

frequently (i.e., larger n
(u,t)
i ) the aspect i is mentioned by

u, the greater the preference of u to aspect i. Similarly, the
quality of aspect i of item v at time t, q(v,t)(i), is computed
with the following equation [26]:

q(v,t)(i) =















0, if aspect i of item v is not mentioned

until time t

1 +
a− 1

1 + e−k
(v,t)
i

·s
(v,t)
i

, otherwise,

(14)

where k
(v,t)
i is the total number of times that aspect i of item

v is mentioned till time t, and s
(v,t)
i represents the average

sentiment of the reviews on aspect i of item v till time t. We

use the following equation to produce s
(v,t)
i [26]:

s
(v,t)
i =

∑k
(v,t)
i

j S
(v,i)
j

k
(v,t)
i

(15)

where S
(v,i)
j is 1 if the aspect i of item v is mentioned with

positive opinion words at j-th review, and -1 otherwise. Before
the training of HDE, the opinion words and aspect words will

be extracted with the method used in [26]. As the extraction of

the words is not the focus of this paper, we refer the interested

readers to [26] for more details.

IV. EVALUATION OF RATING PREDICTION

A. Experimental Setting

1) Datasets: The experiments are conducted on three real-

world datasets collected from Amazon, Digital Music, Video

Game, and Movie, all of which contain user-item ratings and

textual reviews. The statistics of the datasets are presented in

Table I. The aspects on the datasets are extracted with the same

method as used in [26], which generates the aspect words from

the text review corpus using grammatical and morphological

analysis tools. Particularly, the number of aspects f = 98,
57, and 120 on Digital Music, Video Game, and Movie,

respectively. On each dataset, we randomly select 80% as

training set, 10% as validation set, and the remaining 10%

as testing set.

2) Baselines: In order to demonstrate the effectiveness of

HDE, we compare our model with the following five models,

PMF, HFT, EFM, DeepCoNN, NARRE, and AMF, whose

characteristics are showed in Table II.

• PMF [16] Probabilistic Matrix Factorization (PMF) is

a classic factor based recommendation algorithm which

models the user preference matrix as a product of two

lower-rank user and movie matrices.

• HFT [15] Hidden Factors and hidden Topics (HFT)

model can make product recommendations with a fusion

of ratings and review texts. Particularly, HFT uses LDA

[24] method to obtain the stochastic topic distribution of

reviews, and combines it with a latent factor model.
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TABLE I
STATISTICS OF THE DATASETS.

Datasets #Users #Items #Reviews #Aspects (f ) #Density
Digital Music 5,541 3,568 64,706 98 0.33%
Video Game 24,303 10,672 231,780 57 0.09%
Movie 123,960 50,052 1,679,533 120 0.03%

TABLE II
COMPARISON OF THE BASELINES.

Characteristics PMF HFT EFM DeepCoNN NARRE AMF HDE NA-HDE NL-HDE
Ratings

√ √ √ √ √ √ √ √ √
Textual Reviews \ √ √ √ √ √ √ √ √
Deep Learning \ \ \ √ √ √ √ √ √
Explainable \ \ √ \ √ √ √ √ √
Temporal features \ \ \ \ \ \ √ √ \

0.755

0.805

0.855

0.905

0.955

1.005

1.055

1.105

1.155

1.205

1.255

8 32 64 128

R
M

S
E

Dimensionality

Video Games Digital Music

Movie

(a) RMSE.

0.555

0.605

0.655

0.705

0.755

0.805

0.855

0.905

0.955

1.005

8 32 64 128

M
A

E

Dimensionality

Video Games Digital Music

Movie

(b) MAE.

Fig. 5. Tuning of Embedding Dimensionality

• EFM [26] Explicit Factor Model (EFM) is an explainable

recommendation model which first extracts aspects and

user opinions by phrase-level sentiment analysis on user

reviews, and then generates with aspect-level explana-

tions.

• DeepCoNN [27] DeepCoNN utilizes two parallel CNN

networks to process reviews, one for the modeling of

user’s behavioral features, and the other for the reviews

received by the item, and jointly models users and items

by a Factorization Model.

• NARRE [2] NARRE is a neural attentional regression

model with review-level explanations (NARRE) for rec-

ommendation, which introduces an attention mechanism

to explore the usefulness of reviews.

• AMF [10] AMF is an aspect-based latent factor model

which can make recommendations by fusing explicit

feedbacks of users with auxiliary aspect information

extracted from reviews of items.

Additionally, in order to verify the effectiveness of the

Personalized Embedding component and the Temporal Em-

bedding component of HDE, we also compare HDE with two

more baseline methods, NA-HDE and NL-HDE. NA-HDE

is a variant of HDE removing the personalized embedding

component, while NL-HDE is a variant of HDE removing the

temporal embedding component.

3) Evaluation Metrics: We use the Root Mean Square Error

(RMSE) and Mean Absolute Error (MAE) as the evaluation

metrics, which are defined as:

RMSE =

√

∑

(u,v)∈Itest
(R(u, v)− R̂(u, v))2

|Itest|
, (16)

MAE =

∑

(u,v)∈Itest
|R(u, v)− R̂(u, v)|

|Itest|
, (17)

where Itest is the testing set.
4) Parameter Setting: The hyper-parameters are tuned on

the validation set. We set the batch size as 128, the dropout
ratio 0.3. For simplicity, we set the dimensionalities dφ, da,
de, dp, dt, and dγ with the same value on the same dataset.
Figure 5 shows that both RMSE and MAE achieve the best

at the dimensionality of 32 on Digit Music and Video Game,

while 64 on Movie. Therefore we set dφ= da= de= dp= dt=
dγ= 32 on both Digital Music and Video Games, while 64 on
Movie. However, note that theoretically the dimensionality of

different embedding can be set to different value.

B. Rating prediction

Table III shows the rating prediction performance with

respect to RMSE and MAE on the three datasets. First, we can

see that the RMSE and MAE of HDE outperform the baseline

methods on both datasets, which demonstrates the overall

advantage of HDE due to its ability to generate the user/item

embeddings with a fusion of two intermediate embeddings, the

personalized embedding and temporal embedding. Particularly,

due to the attentional network in the personalized embedding

component, HDE can capture the different importance of items

(users) to a user (an item) personalized preference, and due

to the LSTM in temporal embedding component, HDE can

capture the dynamic user aspect preference and item aspect

quality.

We also note that the performance of HDE is better than

that of NA-HDE and NL-HDE. Particularly, compared to

NA-HDE, HDE reduces the RMSE by 3%, 4%, and 4%,

and reduces MAE by 5%, 13%, and 7%, on Digital Music,

Video Game, and Movie, respectively, which verifies the
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Fig. 6. GOFE at k = 1.
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Fig. 7. GOFE at Fixed p.
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Fig. 8. Comparison of Explainability.

benefit brought by the personalized embedding and justifies

our assumption that different items have different impact on

the same user and different users have different impact on the

same item. At the same time, compared to NL-HDE, HDE

reduces the RMSE by 7%, 12%, and 6%, and reduces MAE

by 3.4%, 10.7%, and 12%, on Digital Music, Video Game,

and Movie, respectively. This result shows the effectiveness

of the temporal embedding by which HDE can capture the

dynamics of user aspect preference and item aspect quality

from reviews.

TABLE III
PERFORMANCE OF RATING PREDICTION.

Digital Music Video Games Movie

RMSE MAE RMSE MAE RMSE MAE

PMF 0.9418 0.6986 1.1119 0.8383 1.2606 0.9851

HFT 0.9184 0.6790 1.0709 0.7935 1.2247 0.9221

EFM 0.9072 0.6643 1.0935 0.8027 1.2331 0.9572

DeepCoNN 0.8875 0.6458 1.0620 0.7904 1.1311 0.8559

NARRE 0.8873 0.6541 1.0556 0.7922 1.1248 0.8196

AMF 0.8854 0.6370 1.0528 0.7527 1.0995 0.7766

NA-HDE 0.9031 0.6579 1.0975 0.8427 1.1217 0.8321

NL-HDE 0.9380 0.7092 1.0895 0.8260 1.1379 0.8749

HDE 0.8764 0.6278 1.0526 0.7376 1.0742 0.7731

V. EVALUATION OF EXPLAINABILITY

A. Quantitative Evaluation of HDE Explainability

Our idea to quantitatively evaluate the explainability of

HDE is based on the intuition that the rationality of rec-
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(a) sample user profile. (b) item1 (recommended) profile. (c) item2 (recommended )profile. (d) item3 (not recommended)
profile.

Fig. 9. The profiles of the sample user on Digit Music, two recommended items, and one not recommended item.

(a) sample user profile. (b) item1 (recommended) profile. (c) item2 (recommended )profile. (d) item3 (not recommended)
profile.

Fig. 10. The profiles of the sample user on Video Game, two recommended items, and one not recommended item.

ommendations depends on wether the aspect quality of the

recommended items satisfies the aspect preference of the user

better than those of not recommended items.

For any aspect a, we sort all the items with respect to their
quality on a, and choose top-q items Z(a)

q = {z1, · · · , zq} ⊆

V , i.e., for any v ∈ Z
(a)
q and any v′ /∈ Z

(a)
q , q̂(v)(a) ≥

q̂
(v′)(a). At the same time, for a given user u, we first choose
top-p aspects A(u)

p = {a1, · · · , ap} according to its aspect

preference vector p̂(u), i.e., for any a ∈ A(u)
p and any a′ /∈

A(u)
p , p̂(u)(a) ≥ p̂

(u)(a′).

Suppose HDE recommends top-k items V
(u)
k = {v1, · · · ,

vk} to user u according to the predicted ratings. For any v ∈

V
(u)
k , we need to check whether there is at least one aspect

a that is preferred by u, i.e., a ∈ A(u)
p , and whose quality

q̂
(v)(a) is better than that of the items not recommended, i.e.,

v ∈ Z(a)
q . For this purpose, we define the following identifier

function:

I(u, v) =

{

1, ∃a ∈ A(u)
p , v ∈ Z(a)

q

0, otherwise.
(18)

Basically, I(u, v) = 1 implies that the explanation why v
is recommended to u is that item v is satisfied by user u
due to some aspect a preferred by u on which v is better
than other items. Now we can define the following metric

called Goodness Of Fit on Explanation (GOFE) to measure

the explainability of HDE,

GOFE@k, p, q =

∑

u∈U c(u)

C
, (19)

where c(u) =
∑

v∈V
(u)
k

I(u, v) is the number of recommended

items satisfied by u, and C = |U | ∗ k is the total number of
items recommended to all the users. Essentially, GOFE can be

understood as the probability that HDE can give explanations

from the perspective of preference satisfaction.

Figure 6 shows the GOFE at k = 1 on the three datasets,
which means we only recommend one item to users. We can

see that GOFE increases with q and p on all the three datasets.
Basically, q and p define the scope of candidate explanations
from the perspective of item and the perspective of aspect,

respectively. The results, therefore, are consistent with the

intuition that larger the scope of possible explanations, better

the explainability.

Figure 7 shows the GOFE at fixed p on the three datasets. As
the aspects of Digit Music and Movie are more than those of

Video Game, we set p = 10 on Digit Music and Movie while
p = 5 on Video Game. We can see that GOFE increases with q,
again due to more candidate explanations incurred by larger q.
We can also note that GOFE increases with k, which indicates
an interesting property of HDE that the more recommended

items, greater the explainability of HDE.

To further verify the explainability fo HDE, we also com-

pare it with EFM and AMF, which are most similar to our

work as they can also provide aspect-level explanations. To

make the comparison fair, we set p, q = 10 at which EFM and

AMF perform best. As we can see from Figure 8, the GOFE of

HDE significantly outperforms that of EFM and AMF, which

indicates that HDE has better explainability than EFM and

AMF. We argue that this is because of two reasons. One is

that the dynamic aspect-level explanations offered by HDE are

more proper than the static ones offered by EFM and AMF.

The other reason is that HDE can capture the preference of a

user to aspects even if they are not mentioned by that user.

B. Case Study for Explainability Verification

At first, on Digit Music, we first randomly sample one user

with ID ”mistermaxxx08”, and then visualize her/his aspect

preference vector p̂ learned by HDE using a word cloud shown

in Figure 9(a), where each word represents an aspect and the

size of the word representing aspect i is proportional to the
p̂(i) which indicates how much the preference of the user to
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(a) sample user profile at 2008. (b) sample user profile at 2014.

Fig. 11. The dynamic profiles of the sample user on Digit Music.

that aspect. From Figure 9(a) we can see the top-5 aspects

preferred by the sample user are ”album, classic, rap, cd,

songs”. If we expand the range to top-10, we can see the
aspects ”beats” and ”hes”, which are not mentioned in the

reviews of the user, are included. Such result shows that HDE

is able to learn user latent preference to aspects even though

they are not mentioned in user reviews.

The top-2 items recommended by HDE to this user are

item1 (with ID B0000004UM) and item2 (ID B0000004YB),

whose aspect quality vectors are shown in 9(b) and 9(c),

respectively. At the same time, we also randomly choose one

item (item3 with ID B0009VJWQS) not recommended and

show its aspect quality vector in 9(d). From Figures 9(b),

9(c), and 9(d), we can see that item1 performs well on the

aspects ”album, classic, cd, track, band”, item2 performs well

on ”songs, album, cd, rap, fan”, and item3 performs well

on ”release, sounds, track, cd, pop”. It is obvious that the

aspect quality of item1 and item2 is more consistent with

the user aspect preference than item3 is. Particularly, for the

recommendation of item1, we can generate the explanation

as ”You might be interested in [album, classic, cd], on which

item1 performs well”, while for the recommendation of item2,

we can generate the explanation as ”You might be interested

in [album, rap, cd], on which item2 performs well”.

Similarly, we also sample one user on Video Game and

use HDE to recommend top-2 items to her/him, whose aspect

preference/quality vectors are visualized in Figure 10. Again,

we can see that the aspect quality of recommended items

(shown in Figures 10(b) and 10(c)) are more consistent with

the aspect preference of the sample user (shown in 10(a)) than

that of not recommended item (shown in 10(d)).

C. Case Study for Capturing Dynamic Preference

As we have mentioned before, preference of users always

change over time. Again, we use examples to show the ability

of HDE to capture the user dynamic preference. For the sample

users same as above, HDE generates their aspect preference

vectors at 2008 and 2004, which are visualized in Figures

11(a) and Figure 11(b) for the sample user on Digit Music,

and Figures 12(a) and Figure 12(b) for the sample user on

Video Game, respectively. From Figures 11 and 12, we can

see that in 2014, these users had new preferences which they

did not have in 2008 . For example, in 2014 the sample user

on Digit Music became interested in classic music which was

not her/his preference in 2008.

(a) sample user profile at 2008. (b) sample user profile at 2014.

Fig. 12. The dynamic profiles of the sample user on Video Game.

VI. RELATED WORK

A. Explainable Recommendation

The existing methods for explainable recommendation

roughly fall into two classes. One class of the explainable

recommendation methods generate explanations based on rel-

evant users or items, where a recommendation of an item can

be explained as ”the users who are similar to you like the

item”, or ”the item is similar to the items you like” [17], [19].

The other class is based on based on reviews. Recently, a large

number of literatures have been proposed for exploiting textual

review information to provide explanations while improving

the rating prediction performance, for examples, EFM [26],

HFT [15], AMF [10], and NARRE [2].

Recently, a large number of literatures have been proposed

for exploiting textual review information to provide explana-

tions while improving the rating prediction performance, for

examples, EFM [26], HFT [15], AMF [10], and NARRE [2].

Aspect-based explainable recommendation methods extract

aspect information from review, where two types of aspects are

defined, one is defined as a noun word or phrase that represents

a feature [26], and the other is defined as a set of words that

describe a topic in the reviews [6], [10], [28]. Zhang et al.

propose a model that extracts explicit product features and

user opinions by phrase-level sentiment analysis, and then uses

Matrix Factorization to produce the recommendation [26]. Hou

et al. propose an Aspect-based Matrix Factorization (AMF)

model which can make recommendations by fusing auxiliary

topic-based aspect information extracted from reviews into

matrix factorization [10]. McAuley et al. propose an approach

that combines latent rating dimensions with latent review

topics, which uses an exponential transformation function to

link the topic distribution over reviews [15]. Li et al. propose

a deep learning based framework named NRT which leverages

gated recurrent units (GRU) to summarize the massive reviews

of an item and generate tips for an item [13]. Recently,

some works that provide review-level explanations have been

also proposed. For example, Chen et al. propose an attention

mechanism based model to explore the usefulness of reviews

and produce highly-useful review-level explanations to help

users make decisions [2].

B. Deep Learning for Recommendation

Recently, some research works have incorporated deep

learning techniques, including RBM [8], Autoencoders [21],

RNN [23], and CNN [22], into recommender systems to im-

prove the performance of user and item embedding learning. In
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addition to combining deep neural networks with collaborative

filtering [2], the existing deep learning based recommenda-

tion models often integrate textual reviews to enhance the

performance of latent factor modeling [1], [10], [18], [26],

[27]. For example, DeepCoNN [27] uses convolutional neural

networks to process reviews, and utilizes deep learning tech-

nology to jointly model user and item from textual reviews.

Recently, some works have incorporated attention mechanism

into recommender systems [3]–[5], [11], [14], [20]. However,

the existing works based on deep learning often only focus on

the latent feature learning for users and items, but ignore the

explainability of recommendations.

VII. CONCLUSIONS

In this paper, we propose a novel model called Hybrid

Deep Embedding (HDE) for recommendations with dynamic

aspect-level explanations. We introduce a hybrid embedding

framework by which HDE can make recommendations by

fusing dynamic aspect information extracted from reviews

with user-item interactions. HDE first learns two intermedi-

ate embeddings, Personalized Embedding (IE) and Temporal

Embedding (TE) for capturing the dynamic personalized pref-

erence, and then generate the finally embeddings of users and

items for rating prediction. Simultaneously, HDE can generate

the dynamic aspect preference/quality vectors for users/items

via an encoder-decoder based network. The results of the

extensive experiments conducted on real datasets verify the

recommendation performance and explainability of HDE.
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