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ABSTRACT
Recommendation models based on deep learning are fragile when
facing adversarial examples (AE). Adversarial training (AT) is the
existing mainstream method to promote the adversarial robustness
of recommendation models. However, these AT methods often have
two drawbacks. First, they may be ineffective due to the ubiquitous
sparsity of interaction data. Second, point-wise perturbation used
by these AT methods leads to suboptimal adversarial robustness, be-
cause not all examples are equally susceptible to such perturbations.
To overcome these issues, we propose a novel method called Cross-
domain Distributional Adversarial Training (CDAT) which utilizes
a richer auxiliary domain to improve the adversarial robustness
of a sparse target domain. CDAT comprises a Domain adversarial
network (Dan) and a Cross-domain adversarial example generative
network (Cdan). Dan learns a domain-invariant preference distri-
bution which is obtained by aligning user embeddings from two
domains and paves the way to leverage the knowledge from another
domain for the target domain. Then, by adversarially perturbing
the domain-invariant preference distribution under the guidance of
a discriminator, Cdan captures an aggressive and imperceptible AE
distribution. In this way, CDAT can transfer distributional adver-
sarial robustness from the auxiliary domain to the target domain.
The extensive experiments conducted on real datasets demonstrate
the remarkable superiority of the proposed CDAT in improving the
adversarial robustness of the sparse domain. The codes and datasets
are available on https://github.com/HymanLoveGIN/CDAT.
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1 INTRODUCTION
Deep learning-based recommendation models are widely deployed
on online service platforms to deliver tailored recommendations
to users. But, these models are vulnerable to adversarial attacks
when facing with adversarial examples (AE) [9, 27]. AE is a form of
input data that has been meticulously designed to introduce minor
yet purposeful perturbations to the original input samples, which
can lead to diminished recommendation performance. Therefore,
the improvement of adversarial robustness in recommendation
models, namely, the ability to defend against AE, has become a
focal point of interest for researchers. Adversarial training (AT)
[1, 5, 10, 28, 33–35] is the predominant method for enhancing the
adversarial robustness of recommendation models, which dynami-
cally generates AEs and integrates them into the training process,
equipping recommendation models with adversarial robustness.
However, it still faces the following challenges.

Substantial data are needed for AT of a model, otherwise, the
model will be suboptimal in adversarial robustness [23]. This is
especially true in recommendation models, where the data sparsity
issue is widespread. An effective approach to mitigate this issue
is cross-domain recommendation (CDR) [3, 11, 14, 38, 40], which
enhances the recommendation performance of the sparse target
domain by utilizing the knowledge from another auxiliary domain.
However, traditional CDRs focus on transferring the knowledge that
can improve the recommendation accuracy, without considering the
knowledge benefitting adversarial robustness. On the other hand,
to bolster the adversarial robustness of recommendation models,
the availability of more powerful AEs is crucial, as they present the
models with more formidable attack scenarios. However, prevalent
ATmethods [10, 34, 36] generally adopt the point-wise perturbation
strategy to generate AEs, which ignores the varying susceptibility
of the samples to such adversarial attacks, thus yielding suboptimal
adversarial robustness [2, 25].

To address the above challenges, we propose a novel AT method
called Cross-domain Distributional Adversarial Training (CDAT).
CDAT encompasses a Domain adversarial network (Dan) and a
Cross-domain adversarial example generative network (Cdan). The
Dan focuses on capturing a domain-invariant user preference distri-
bution. Specifically, the Dan includes a domain-invariant preference
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encoder and a domain discriminator. This encoder takes all user
data from both domains as input and aligns user preference embed-
dings from the two different domains within the same embedding
space with the assistance of the domain discriminator. This align-
ment results in a domain-invariant preference distribution, thereby
paving the way for the target domain to leverage the knowledge
from another domain. Cdan consists of a cross-domain adversarial
example generator and a cross-domain adversarial example dis-
criminator. The target of the generator is to learn a distribution of
Cross-Domain Adversarial Example (CDAE) which is imperceptible
and possesses strong attack capability. To be specific, the genera-
tor takes the domain-invariant preference distribution obtained by
Dan as input and then adversarially perturbs it to get the CDAE
distribution. To ensure the imperceptibility of CDAEs, the discrim-
inator enforces a constraint on the distance between the CDAE
distribution and the domain-invariant preference distribution and
the generator minimizes the distance. Concurrently, to guarantee
the aggressiveness of CDAEs, CDAEs generated by the generator
are fed into the recommenders of both auxiliary and target domains,
and the generator is optimized to maximize the recommendation
losses. Finally, we can generate jointly perturbed and imperceptible
CDAEs from the CDAE distribution for CDAT. And in this man-
ner, the adversarial robustness from the auxiliary domain can be
transferred to the sparse target domain.

The main contributions of this paper can be summarized as
follows:

• Wepropose a Cross-domainDistributional Adversarial Train-
ing (CDAT) method, which enhances the adversarial robust-
ness of a recommendation model in the sparse target domain
by transferring adversarial robustness from the auxiliary
domain.

• We propose a Cross-domain Adversarial Example Generative
Network (Cdan). This network takes a domain-invariant pref-
erence distribution obtained by Dan as input and captures a
high-quality CDAE distribution to support CDAT, under the
constraint of the cross-domain adversarial example discrimi-
nator and the guidance of maximizing the recommendation
losses.

• We conduct extensive experiments in three scenarios con-
structed by two real datasets to verify the effectiveness of
CDAT.

2 PRELIMINARIES
2.1 Base Model
We design a basic recommendation model called base model to
combine with CDAT to show its performance. The base model is
made up of a preference encoder E and a recommender Rec taking
lower user embeddings

{
eu ∈ Rd

}
and lower item embeddings{

ev ∈ Rd
}
as input, where d is embedding dimensionality.

2.1.1 User and Item Embedding. Let U and V (of sizem = |U|

and n = |V|) be the sets of users and items, respectively. We use
the user one-hot encoding xu ∈ {0, 1}m and the item one-hot
encoding xv ∈ {0, 1}n to represent a user u ∈ U and an item
v ∈ V , respectively. A user u’s embedding eu will be obtained

with a lookup over a learnable embedding matrixW u ∈ Rd×m , i.e.,
eu =W uxu . Likewise, we can also obtain an item v’s embedding
ev by a lookup over a learnable embedding matrixW v ∈ Rd×n , i.e.,
ev =W vxv . Furthermore, the preference encoder E parameterized
by θE will receive a user embedding eu as input to gain a user’s
preference embedding zu , which is implemented as a Multi-Layer
Perceptron (MLP) with activation function ReLU.

2.1.2 Interaction Prediction Network. To predict the probability
that a useru will interact with an itemv , we employ a recommender
Rec with an MLP and a sigmoid function as output:

ruv = Rec (zu ⊕ ev ;θRec ) , (1)

where θRec represents the learnable parameters of Rec and ⊕ rep-
resents concat operation.

To optimize the model, we construct a training dataset D =

{(u,v+,v−)}, where v+ and v− denote a positive sample and a
negative sample of a user u, respectively. By applying the popular
pair-wise ranking loss of BPR [22, 38], we define the following
objective function:

LRec (θE , θRec ) = −
1
|D|

∑
(u ,v+,v−)∈D

log
(
ruv+ − ruv−

)
. (2)

2.2 Problem Definition
The target problem of this paper is that we want a recommendation
model in the sparse target domain t to learn a set of adversarially
robust parameters θ (t )Rec which denotes the parameters of the rec-
ommender in the target domain t to defend the adversarial attack
with the help of the auxiliary domain s .

2.3 Threat Model
Attack Capability.We consider the threat model as an evasion at-
tack model, which attacks the target recommendation model during
inference by crafting AEs. Although in the realm of computer vision,
these perturbations are typically added to raw data, in the context of
recommendation, they are instead applied to the model parameters
that underlie the recommendation strategy. Specifically, we focus
on the adversarial perturbations introduced to user embeddings.

Attack Goal. This threat model belongs to an untargeted attack,
which seeks to degrade the overall recommendation performance
rather than targeting one user or item.

Attack Knowledge. The threat model is regarded as a white-
box attack, permitting the method full knowledge of the recommen-
dation model, including its parameters and structures. Although
white-box attacks represent an idealized state of attack, they pro-
vide the most challenging adversaries for AT, which is beneficial
for enhancing the adversarial robustness of the recommendation
model.

3 METHODOLOGY
3.1 Overview
Figure 1 shows the architecture of CDAT, where the solid lines
represent the paths activated when training, while the gold solid
lines represent the paths activated when applying. CDAT is com-
posed of the Domain adversarial network (Dan) and Cross-domain
adversarial example generative network (Cdan).
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Figure 1: The overview of CDAT.

In Dan, CDAT first transforms the users’ one-hot vectors
{
x (τ )u

}
and the items’ one-hot vectors

{
x (τ )v

}
to their corresponding lower

user embeddings
{
e(τ )u

}
and lower item embeddings

{
e(τ )v

}
by

lookup method. And, τ = {s, t} where s and t denote an auxil-
iary domain s and a target domain t , respectively. To align the
users’ preference embeddings from two different domains, CDAT
lets domain-invariant preference encoder GI to capture the distri-
bution pθI (z̄u ) containing users’ domain-invariant preferences by
means of domain discriminator, where θI is the parameters of GI .
In Cdan, with the domain-invariant preference distribution as in-
put, CDAT utilizes cross-domain adversarial example generatorGA
parameterized by θA to learn a harmful and imperceptible CDAE
distribution pθA

(
z̃u

)
.

Lastly, in domain t , the recommender Rec(t ) predicts the inter-
action probability r (t )uv by feeding a user’s domain-invariant pref-
erence z̄(t )u and an item embedding e(t )v . At the same time, CDAEs
generated byGA are also fed into the recommender. Then, we ad-
versarially update the parameters of the recommender to obtain a
recommendation model with adversarial robustness in the sparse
target domain.

3.2 Domain Adversarial Network
Dan is composed of a domain-invariant preference encoder GI and
a domain discriminator Dϕ . Inspired by DANN [7], we leverage do-
main discriminator Dϕ to help encoderGI to learn a users’ domain-
invariant preference distribution pθI (z̄u ), where z̄u ∼ pθI (z̄u ), in
preparation for further applying the knowledge benefitting AT from
the auxiliary domain.

3.2.1 Domain-invariant Preference Embedding. Based on a user
embedding e(τ )u , we generate the domain-invariant preference z̄u
by GI , as follow:

z̄u = GI

(
e(τ )u ;θI

)
, τ ∈ {s, t} , (3)

where z̄u ∈ Rd and θI is the learnable parameters of GI .

3.2.2 Optimization. To make sure that z̄u is domain-invariant, we
introduce a domain discriminator Dϕ , which takes z̄u as input. The

loss of the domain discriminator is defined as:

Lϕ

(
θI , θϕ

)
= −

(
E
z̄ (s )u ∼pθI

(
z̄u |e

(s )
u

) log
(
Dϕ

(
z̄(s)u

))
+E

z̄ (t )u ∼pθI

(
z̄u |e

(t )
u

) log
(
1 − Dϕ

(
z̄(t )u

)))
,

(4)

where θϕ is the learnable parameters of the domain discriminator,
z̄(s)u and z̄(t )u are the domain-invariant preference based on s and t do-
mains’ user embeddings, respectively. And if τ = s ,i.e. the domain-
invariant preference is from the domain s , we let Dϕ

(
z̄(s)u

)
= 1

as groundtruth, otherwise Dϕ
(
z̄(t )u

)
= 0. The role of the domain

discriminatorDϕ is to helpGI learn an indistinguishable preference
distribution. Therefore, the optimization objective of the GI and
Dϕ is defined as the following minmax game:

min
θI

max
θϕ

−Lϕ . (5)

The optimization objective of the domain discriminator Dϕ is to
strengthen its discriminating ability by maximizing the negative dis-
criminating loss (−Lϕ ). The adversarial optimization of Equation
(5) results in a good GI by minimizing the loss to update its param-
eters. Hence, GI is able to generate {z̄u } that are indistinguishable
enough to fool a powerful domain discriminator.

3.2.3 Constraint. Shared users are both in s and t domains. We
can get a user’s two domain-invariant preferences from different
domains. Then, it is essential to keep the two domain-invariant
preferences of a user close in the same space. To achieve this, we
introduce an auxiliary loss Lsu to constrain them. The Lsu is
defined as:

Lsu (θI ) =



z̄(s)u − z̄(t )u




 ,u ∈

{
U(s) ∩U(t )

}
. (6)

Wewill updateGI byminimizingLsu to resist the distance between
z̄(s)u and z̄(t )u .

In the end, we can get the following loss of Dan by combining
Lϕ and Lsu :

LDan

(
θI , θϕ

)
= −Lϕ + Lsu . (7)
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To ensure that theGI can capture the recommendation information,
we combine LDan and the loss of recommender with domain-
invariant preferences as input to guide the optimization process of
Dan jointly. As a result, the optimization objective of Dan can be
concluded as follow:

min
θI

max
θϕ

(
LDan + L

(s)
Rec + L

(t )
Rec

)
, (8)

where L
(s)
Rec is the recommendation loss of the recommender in

the auxiliary domain and L
(t )
Rec is the recommendation loss of the

recommender in the target domain.

3.3 Cross-domain Adversarial Example
Generative Network

Inspired by generative adversarial network [8, 38], we propose a
novel cross-domain adversarial example generative network (Cdan)
containing cross-domain adversarial example generator GA and
cross-domain adversarial example discriminator Dψ to jointly per-
turb all samples. GA will learn a satisfactory distribution of CDAE
constrained by Dψ and maximized recommendation losses.

3.3.1 CDAE. The goal ofGA is to perturb all input samples jointly
to generate an imperceptible CDAEs’ distribution pθA

(
z̃u

)
which

has enough harmfulness, where z̃u ∼ pθA
(
z̃u

)
. To realize this, we

take domain-invariant preference distribution as input of GA and
generate CDAE z̃u :

z̃u = GA (z̄u ;θA) , u ∈

{
U(s) ∪U(t )

}
, (9)

where z̄u implies a user’s domain-invariant preference who is from
s or t domain and θA is the learnable parameters of GA.

3.3.2 Optimization. In order to guarantee that CDAEs’ distribution
is imperceptible, we introduce a cross-domain adversarial example
discriminator Dψ parameterized by θψ , with z̄u and z̃u as input.
Consequently, the loss of Cdan is defined as:

LCdan

(
θA, θψ

)
= −

(
Ez̄u∼pθI (z̄u )

log
(
Dψ (z̄u )

)
+Ez̃u∼pθA (z̃u ) log

(
1 − Dψ

(
z̃u

) ))
.

(10)

If z̄u acts as input of Dψ , we set Dψ (z̄u ) = 1, otherwise Dψ
(
z̃u

)
=

0.
To make certain that the CDAE distribution possesses adequate

aggressivity while avoiding obtaining a trivial Cdan, it is required
to maximize the recommendation losses of the auxiliary and tar-
get domains’ recommender taking CDAEs as input to direct the
optimization of Cdan. As a result, we define the following minmax
optimization objective for Cdan:

min
θψ

max
θA

(
LCdan + λ

(
L̃
(s)
Rec + L̃

(t )
Rec

))
, (11)

where λ is a factor to control the contribution of CDAT, L̃(s)
Rec is

the adversarial recommendation loss of the auxiliary domain and
L̃
(t )
Rec is the adversarial recommendation loss of the target domain.
In this way, we train the discriminator Dψ to minimize the cross

entropy LCdan to yield a strong discriminator to ensure CDAEs’
imperceptible. That CDAEs own imperceptibility indicates that
domain-invariant preference distribution and CDAE distribution

Algorithm 1 Training Algorithm of CDAT.
Input: Datasets D = D(s ) ⋃ D(t ), λ, η;
Output: Well-trained GI , Rec (t );
1: Random initialize GI , Dϕ , GA , Dψ , Rec (s ) and Rec (t );
2: for T epochs do
3: Randomly draw samples {(u , v+, v−)} from D;
4: for TDan epochs do
5: Compute gradient ∇θϕ (LDan )

and ∇θI

(
LDan + L

(s )
Rec + L

(t )
Rec

)
;

6: θ (T+1)
ϕ = θ (T )

ϕ + η∇θϕ (LDan );

7: θ (T+1)
I = θ (T )

I − η∇θI
(
LDan + L

(s )
Rec + L

(t )
Rec

)
;

8: end for
9: Get z̄u ∼ pθI (z̄u );
10: for TCdan epochs do
11: Compute gradient ∇θψ (LCdan )

and ∇θA

(
LCdan + λ

(
L̃

(s )
Rec + L̃

(t )
Rec

))
;

12: θ (T+1)
ψ = θ (T )

ψ − η∇θψ (LCdan );

13: θ (T+1)
A = θ (T )

A + η∇θA
(
LCdan + λ

(
L̃

(s )
Rec + L̃

(t )
Rec

))
;

14: end for
15: Get z̃u ∼ pθA

(
z̃u

)
;

16: Compute gradient ∇
θ (s )Rec

(
L

(s )
Rec + λ L̃

(s )
Rec

)
and ∇

θ (t )Rec

(
L

(t )
Rec + λ L̃

(t )
Rec

)
;

17:
(
θ (s )Rec

) (T+1)
=

(
θ (s )Rec

) (T )

− η∇
θ (s )Rec

(
L

(s )
Rec + λ L̃

(s )
Rec

)
;

18:
(
θ (t )Rec

) (T+1)
=

(
θ (t )Rec

) (T )

− η∇
θ (t )Rec

(
L

(t )
Rec + λ L̃

(t )
Rec

)
;

19: end for

are close. Apart from this, we also adversarially train GA with
the aim of maximizing the loss LCdan + λ

(
L̃
(s)
Rec + L̃

(t )
Rec

)
to gain

aggressive CDAEs for enhancing adversarial robustness of recom-
mendation model in the sparse target domain.

3.4 Cross-domain Distributional Adversarial
Training

We leverage these well-pleasing CDAEs captured by Cdan to adver-
sarially attack the recommender Rec(t ) in the target domain and
update the parameters of Rec(t ) to obtain a more robust recom-
mendation model. In this process, the adversarial robustness will
be transferred from the rich auxiliary domain to the sparse target
domain by CDAEs.

To be specific, a CDAE z̃u is sampled from pθA
(
z̃u

)
which fits

by GA. And then, we predict the attacked interaction probability
r̃
(t )
ũv that an attacked user ũ will interact with an item v :

r̃
(t )
ũv = Rec(t )

(
z̃(t )u ⊕ e(t )v ;θ (t )Rec

)
, (12)

where z̃(t )u ∼ pθA

(
z̃u | z̄(t )u

)
and e(t )v is an item embedding in do-

main t .
To accomplish CDAT, we build an adversarial training set D̃(t ) =

{(ũ,v+,v−)}, where v+ and v− represent a positive sample and a
negative sample of an attacked user ũ, respectively. We define the
following adversarial recommendation loss of the recommender



Improving Adversarial Robustness for Recommendation Model via Cross-Domain Distributional Adversarial Training RecSys ’24, October 14–18, 2024, Bari, Italy

for attacked domain t like Equation (2):

L̃
(t )
Rec

(
θA, θ

(t )
Rec

)
= −

1���D̃(t )
��� ∑
(ũ ,v+,v−)∈D̃

(t )

log
(
r̃
(t )
ũv+

− r̃
(t )
ũv−

)
. (13)

In order to strengthen the adversarial robustness of the rec-
ommendation model in the sparse target domain t by CDAT, the
optimization objective is defined as the following minmax game:

min
θ (t )Rec

max
θA

L̃
(t )
Rec . (14)

θA is updated by maximizing the loss L̃(t )
Rec to destroy the perfor-

mance of Rec(t ). Meanwhile, θ (t )Rec is also updated by minimizing the
loss L̃(t )

Rec to make Rec(t ) be able to defend the adversarial attack.

3.5 Overall Optimization Objective
Finally, by combining LDan , LCdan , L

(s)
Rec , L

(t )
Rec , L̃

(s)
Rec and L̃

(t )
Rec ,

we can get the following overall optimization objective:

min
θI ,θψ ,θ (s )Rec ,θ

(t )
Rec

max
θϕ ,θA

(
LDan + LCdan + L

(s)
Rec + L

(t )
Rec

+λ
(
L̃
(s)
Rec + L̃

(t )
Rec

))
.

(15)

We summarize the training procedure of CDAT in Algorithm 1.

Table 1: Statistics of datasets.

Datasets Douban Amazon

Scenarios Movie-Book Movie-Music TV-CD

Domains Movie Book Movie Music TV CD

#Users 1,873 2,063 2,049 1,624 17,894 15,733

#Shared users 1,231 967 1,859

#Items 9,468 6,703 9,496 5,508 9,881 12,482

#Interactions 460,028 69,211 487,122 51,985 520,166 262,709

Density 2.59% 0.50% 2.51% 0.58% 0.29% 0.13%

4 EXPERIMENTS
The experiments aim to answer the following research questions:

• RQ1 How does CDAT perform compared to the state-of-
the-art baselines in terms of recommendation accuracy and
adversarial robustness?

• RQ2 How do the different parts of CDAT affect the perfor-
mance?

• RQ3 How to illustrate the superiority of CDAT with visual-
izable case studies?

4.1 Experimental Settings
4.1.1 Datasets. We conduct the experiments on two public datasets:
Douban [39] and Amazon [21]. Specifically, we build three cross-
domain scenarios: Movie-Book and Movie-Music in Douban, and
TV-CD in Amazon, where Book, Music and CD are the target do-
mains. Table 1 shows the statistics of the three cross-domain scenar-
ios (after all pre-processing steps), where the density is defined as

the ratio of the observed interactions over all possible interactions.
For the interaction data of the target domain in different scenarios,
the data is randomly divided into training set, validation set, and
testing set. For each user, we randomly select an interacted history
to the validation set, another one to the testing set and the remain-
ing ones to the training set. We repeat such procedure three times
and report the average results with standard deviation.

4.1.2 Baseline Methods. We compare our CDATwith the following
baseline methods, comprising one basic recommendation model,
three AT methods in recommendation (APR, DAT, ACDN), and
two CDR methods (MLP++, ACDR) which are briefly described as
follows:

• Base Model is a basic recommendation model including an
encoder and a recommender, which are both implemented
as an MLP with activation function ReLU.

• APR [10] is an AT method, which generates AEs based on
the user embeddings to maximize the BPR loss and then
forces the recommendation model to minimize the BPR loss
on AEs.

• DAT [33] further considers to add perturbations to both user
and item embeddings with proper restriction.

• ACDN [34] leverages the users shared by the target and
auxiliary domains to construct AEs for AT.

• MLP++ [11] combines twoMLPs by sharing user embedding
matrix to realize cross-domain recommendation.

• ACDR [14] incorporates global user preferences and domain-
specific user preferences via adversarial learning.

For fairness, APR, DAT, ACDN and proposed CDAT use the same
Base Model to compare their performances.

4.1.3 Evaluation Protocols. We adopt the widely used metrics Hit
Ratio (HR) and Normalized Discounted Cumulative Gain (NDCG)
to evaluate the recommendation accuracy of CDAT and the baseline
methods. HR measures whether the testing item is in the top-K list.
While NDCG is a position-sensitive metric, which assigns higher
weights to hits at higher positions. In a word, for both metrics, the
higher values, the better performance can indicate. We also employ
the popular leave-one-out evaluation protocol [4, 10]. Specifically,
we rank a positive item of a testing user among her 99 negative
items which are randomly sampled.

In order to fully evaluate the defense capability of these methods
against different attacks, we employ three attacking methods FGSM
[9], PGD [20] and advGAN [31] to attack the recommendation
model trained by CDAT and baseline methods. Then, we evaluate
the adversarial robustness also by HR and NDCG. For FGSM and
PGD, we set up two attack intensities, e.g. ϵ ∈ {0.1, 1}, to test the
robustness against different attack strengths, which are denoted as
FGSM-0.1, FGSM-1, PGD-0.1 and PGD-1. The detailed settings of
all attacks are presented in Table 2.

4.1.4 Hyper-Parameter Setting. All the hyper-parameters of base-
lines and CDAT are tuned on validation sets. The specific settings
of CDAT are presented in Table 3. All modules in CDAT are im-
plemented as an MLP with activation function ReLU. We choose
Adam as the optimizer. To ensure the stability of the adversarial
process, we employ the hinge gan loss [17, 41].
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Table 2: Hyper-parameters setting of different attacking
methods in different scenarios

Attacking Method Scenarios

Movie-Book Movie-Music TV-CD

advGAN α=0.3,β=0.1,c=10 α=0.3,β=0.1,c=10 α=0.5,β=0.1,c=10
FGSM-0.1 ϵ=0.1, step size=0.1
FGSM-1 ϵ=1, step size=1
PGD-0.1 ϵ=0.1, step size=0.01, iterations=20
PGD-1 ϵ=1, step size=0.1, iterations=20

Table 3: Hyper-parameters setting of CDAT in different sce-
narios

Hyper-parameter Scenarios

Movie-Book Movie-Music TV-CD

learning rate of Dϕ and GI 0.0003 0.0003 0.0001
learning rate of Dψ and GA 0.0001 0.0001 0.0001

learning rate of Rec(τ ) 0.0001 0.0001 0.0001
λ 0.1 0.3 0.1

size of embedding 128
size of domain-invariant preference 32

size of CDAE 32

4.2 Performance Comparison (RQ1)
Tables 4 and 5 present the target domain’s performance in different
scenarios from which we can make the following observations and
analyses.

First, in all scenarios, CDAT almost consistently outperforms the
baselines in terms of all the metrics under adversarial robustness
evaluation. These results verify the superiority of CDAT which
can enhance the adversarial robustness of the sparse target domain
by transferring distributional robustness from a denser auxiliary
domain.

And, these results also imply that our CDAT using joint pertur-
bation is superior to the baselines using point-wise perturbation.

Then, notably, in certain cases, the performance of APR and DAT,
designed for single-domain recommendations, slightly outperforms
our CDAT. We argue that it may be attributed to negative transfer
of recommendation information in CDAT in certain sparse cases.

Finally, in Figure 2, we can observe that the performance of gen-
eral CDR in the target domain declines significantly with the PGD’s
perturbation constrain ϵ increasing. Consequently, we confirm that
the general CDRs just transfer recommendation information to
have a reliable recommendation performance and cannot transfer
the knowledge benefiting adversarial robustness, which leads to
unpromising adversarial robustness of the general CDR model.

4.3 Ablation Study (RQ2)
4.3.1 Performance of Different Parts. Now we investigate the ef-
fectiveness of the Cdan, unshared users, and Dψ . For this purpose,
we compare CDAT with its three variants as follows:

• CDAT-w/o-Cdan is the variantwithout Cdan, whereLCdan ,
L̃
(s)
Rec , and L̃

(t )
Rec are removed from the Equation (15).

Table 4: Performance comparison in different scenarios.
Clean represents the performance of the recommendation
model trained by the proposed CDAT and baselines without
adversarial attacks on the test set. The metric is HR@10 in
this table.

Scenarios Attack Base Model APR DAT ACDN CDAT

Movie-Book

Clean 0.3652±0.0087 0.3822±0.0127 0.3844±0.0120 0.3404±0.0256 0.3940±0.0066
FGSM-0.1 0.3081±0.0153 0.3714±0.0125 0.3774±0.0108 0.3390±0.0244 0.3920±0.0063
FGSM-1 0.1640±0.0141 0.3313±0.0187 0.3510±0.0086 0.3364±0.0247 0.3850±0.0042
PGD-0.1 0.3013±0.0156 0.3614±0.0117 0.3708±0.0102 0.3394±0.0233 0.3904±0.0061
PGD-1 0.1067±0.0143 0.2529±0.0313 0.2739±0.0346 0.3263±0.0259 0.3698±0.0039
advGAN 0.1403±0.0244 0.1015±0.0110 0.1472±0.0174 0.3360±0.0237 0.3886±0.0079

Movie-Music

Clean 0.2789±0.0167 0.3018±0.0027 0.3135±0.0184 0.2802±0.0117 0.3180±0.0146
FGSM-0.1 0.2252±0.0120 0.2956±0.0013 0.3126±0.0180 0.2743±0.0042 0.3169±0.0159
FGSM-1 0.0877±0.0056 0.2805±0.0025 0.2928±0.0259 0.2208±0.0612 0.3004±0.0156
PGD-0.1 0.2184±0.0092 0.2928±0.0026 0.3120±0.0185 0.2710±0.0073 0.3155±0.0141
PGD-1 0.0488±0.0018 0.2244±0.0102 0.2502±0.0494 0.1906±0.0884 0.2724±0.0170
advGAN 0.0570±0.0133 0.1115±0.0221 0.1563±0.0055 0.2271±0.0741 0.2976±0.0148

TV-CD

Clean 0.3079±0.0052 0.3025±0.0222 0.2959±0.0098 0.2326±0.0153 0.3176±0.0047
FGSM-0.1 0.2826±0.0084 0.2867±0.0496 0.2814±0.0095 0.2067±0.0310 0.3162±0.0047
FGSM-1 0.1946±0.0112 0.3265±0.0246 0.2538±0.0088 0.1409±0.0420 0.3100±0.0074
PGD-0.1 0.2819±0.0081 0.2860±0.0504 0.2803±0.0094 0.2032±0.0350 0.3159±0.0049
PGD-1 0.1765±0.0094 0.2072±0.1381 0.2382±0.0089 0.1017±0.0396 0.3027±0.0073
advGAN 0.2100±0.0047 0.2515±0.1077 0.2827±0.0076 0.1883±0.0676 0.3167±0.0049

Table 5: Performance comparison in different scenarios.
Clean represents the performance of the recommendation
model trained by the proposed CDAT and baselines without
adversarial attacks on the test set. The metric is NDCG@10
in this table.

Scenarios Attack Base Model APR DAT ACDN CDAT

Movie-Book

Clean 0.2086±0.0076 0.2225±0.0086 0.2251±0.0066 0.2094±0.0126 0.2254±0.0061
FGSM-0.1 0.1767±0.0112 0.2164±0.0091 0.2208±0.0058 0.2084±0.0116 0.2237±0.0060
FGSM-1 0.0885±0.0059 0.1901±0.0102 0.2068±0.0057 0.2068±0.0091 0.2153±0.0056
PGD-0.1 0.1735±0.0118 0.2122±0.0084 0.2186±0.0056 0.2085±0.0113 0.2230±0.0053
PGD-1 0.0623±0.0050 0.1511±0.0187 0.1664±0.0187 0.2021±0.0089 0.2037±0.0090
advGAN 0.0973±0.0155 0.0686±0.0052 0.1034±0.0127 0.2073±0.0111 0.2223±0.0058

Movie-Music

Clean 0.1478±0.0103 0.1576±0.0041 0.1643±0.0067 0.1491±0.0059 0.1664±0.0038
FGSM-0.1 0.1191±0.0085 0.1547±0.0032 0.1644±0.0059 0.1442±0.0117 0.1646±0.0042
FGSM-1 0.0480±0.0058 0.1453±0.0033 0.1545±0.0099 0.1142±0.0401 0.1508±0.0023
PGD-0.1 0.1165±0.0073 0.1534±0.0039 0.1645±0.0058 0.1422±0.0142 0.1640±0.0036
PGD-1 0.0289±0.0021 0.1193±0.0029 0.1343±0.0214 0.0995±0.0534 0.1349±0.0018
advGAN 0.0369±0.0098 0.0719±0.0111 0.0956±0.0062 0.1172±0.0495 0.1559±0.0046

TV-CD

Clean 0.1547±0.0040 0.1589±0.0102 0.1618±0.0050 0.1259±0.0118 0.1609±0.0018
FGSM-0.1 0.1396±0.0053 0.1512±0.0233 0.1518±0.0047 0.1112±0.0188 0.1602±0.0017
FGSM-1 0.0955±0.0060 0.1703±0.0131 0.1335±0.0050 0.0731±0.0241 0.1561±0.0030
PGD-0.1 0.1405±0.0050 0.1509±0.0236 0.1516±0.0049 0.1097±0.0202 0.1599±0.0018
PGD-1 0.0886±0.0046 0.1068±0.0671 0.1231±0.0058 0.0527±0.0220 0.1514±0.0031
advGAN 0.1138±0.0024 0.1316±0.0565 0.1544±0.0043 0.1043±0.0327 0.1607±0.0019

(a) Movie-Book (b) Movie-Music

Figure 2: Performance comparison with general cross-
domain recommendation methods.

• CDAT-Shared is the variant that only utilizes the shared
users’ data as input.

• CDAT-w/o-Dψ is the variant without the discriminator Dψ ,
where LCdan is removed from the Equation (15).
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(a) constraint with Dψ (b) constraint without Dψ (c) APR (d) DAT (e) ACDN

Figure 3: Visualization comparison between AE distribution and preference distribution in Movie-Book.

Table 6: Ablation Studies in Movie-Book. Clean represents
the performance of the recommendation model trained by
the variants without adversarial attacks on the test set.

Attack Metric CDAT-w/o-Cdan CDAT-w/o-Dψ CDAT-Shared CDAT

Clean
HR@10 0.3906±0.0087 0.3918±0.0044 0.3816±0.0086 0.3940±0.0066

NDCG@10 0.2219±0.0061 0.2216±0.0061 0.2057±0.0082 0.2254±0.0061

FGSM-0.1
HR@10 0.3848±0.0119 0.3880±0.0054 0.3799±0.0076 0.3920±0.0063

NDCG@10 0.2137±0.0070 0.2191±0.0056 0.2021±0.0053 0.2237±0.0060

FGSM-1
HR@10 0.3426±0.0530 0.3762±0.0103 0.3538±0.0171 0.3850±0.0042

NDCG@10 0.1805±0.0397 0.2074±0.0096 0.1843±0.0093 0.2153±0.0056

PGD-0.1
HR@10 0.3828±0.0121 0.3866±0.0062 0.3786±0.0071 0.3904±0.0061

NDCG@10 0.2112±0.0077 0.2182±0.0047 0.2011±0.0049 0.2230±0.0053

PGD-1
HR@10 0.2971±0.0623 0.3525±0.0100 0.3152±0.0107 0.3698±0.0039

NDCG@10 0.1534±0.0411 0.1909±0.0064 0.1638±0.0030 0.2037±0.0090

advGAN
HR@10 0.3524±0.0141 0.3868±0.0060 0.3484±0.0081 0.3886±0.0079

NDCG@10 0.1911±0.0193 0.2188±0.0065 0.1910±0.0120 0.2223±0.0058

The results of the Movie-Book scenario are shown in Table 6.
First, it can be observed that the performance of CDAT is remark-
ably better than CDAT-w/o-Cdan, which shows that Cdan generat-
ing high-quality CDAEs plays an important role in enhancing the
sparse domain’s adversarial robustness. Second, we can see that
CDAT also outperforms CDAT-Shared. This verifies that leverag-
ing sufficient unshared users is better than only employing shared
users’ data. In the end, it is observable that the performance of
CDAT-w/o-Dψ is inferior to CDAT, indicating that CDAEs possess-
ing imperceptibility are good for CDAT.

Figure 3 employs the t-SNE algorithm [29] to visualize the user
preference distribution and AE distribution under CDAT, CDAT-
w/o-Dψ and three baselines. By comparing subfigures (a) and (b) in
Figure 3, we observe that with the constraint of the discriminator
Dψ , the CDAEs’ distribution and domain-invariant preference dis-
tribution are closer, indicating the imperceptibility of our CDAEs.
Furthermore, comparing subfigures (a) with (c), (d), and (e), it is evi-
dent that the AEs produced by CDAT are more balanced in terms of
quality compared to other point-wise perturbation-based methods.
This result validates the effectiveness of our CDAT which jointly
perturbs all samples for generating AEs.

4.3.2 Hyper-parameter and Model Convergence Studies. In this sec-
tion, we study the influence of hyper-parameter, the balance factor λ
between standard generalization and adversarial robustness gener-
alization, of which the results are shown in Figure 4 in Movie-Book.
We can see that the performance of CDAT under adversarial robust-
ness evaluation significantly increases with the increasing of λ from
0 to 0.1, which demonstrates that the model’s adversarial robust-
ness will get promoted with the increasing contribution of CDAT.

Figure 4: Tuning of hyper-
parameter λ in Movie-Book.

Figure 5: Convergence analy-
sis

(a) PGD-1 (b) advGAN

Figure 6: Density Analysis in Movie-Book.

However, when λ is bigger than 0.1, the performance gradually
declines. This is attributed to the excessive contribution of CDAT,
which hinders the model’s acquisition of adversarial robustness.

Additionally, Figure 5 presents the variation of recommendation
loss L(t )

Rec and adversarial recommendation loss L̃(t )
Rec during the

training phase in Movie-Book with λ set to 0.1. It can be observed
that both L

(t )
Rec and L̃

(t )
Rec decrease gradually with the increasing of

iterations, eventually plateauing within a certain range with minor
fluctuations. This trend reflects that our CDAT enables the model
to achieve a balance between recommendation performance and
adversarial robustness as the iterations increases.

4.3.3 Density Analysis. Figure 6 illustrates the variation in perfor-
mance of our CDAT and baseline methods as the density decreases
under different attacks, where the horizontal axes represent the
proportion of the data that are randomly removed from the target
domain’s training set. It can be observed that the performance of
almost all methods declines as the density decreases. However, the
performance of our CDAT remains superior to all baselines. The
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User ID Top10 of Predicted Items

CDAT

Clean

PGD-1

advGAN

45

45

45

1902213621103261565243040472007291339

1902213621103261565243040472007291339

1902213621103261565243040472007291339

ACDN

Clean

PGD-1

advGAN

45

45

45

449511654002374114553830183713381749963

374149763868183711653830145513381749963

400244951165374138301455183713381749963

DAT

Clean

PGD-1

advGAN

45

45

45

2136200526632619024898243040471339729

1787326211024302136526620040471339729

57359734047583913395266489819022136729

Figure 7: Visualization of adversarial robustness of the rec-
ommendation model comparison between our CDAT and
two baselines ACDN and DAT in Movie-Book.

result indicates that our CDAT which leverages the dense auxiliary
domain to enhance the adversarial robustness of the sparse target
domain is effective.

4.4 Case Study (RQ3)
In Figure 7, we visually present the adversarial robustness of rec-
ommendation models trained by CDAT, ACDN and DAT in Movie-
Book. We select a user whose ID is 45 at random. For this user,
we obtain her top-10 predicted item lists from the recommenda-
tion models trained by CDAT, ACDN and DAT on the test set,
respectively. We evaluate these predicted item lists through three
evaluation methods which are clean, PGD-1 and advGAN.

For each AT method, in the PGD-1 and advGAN evaluation, if
the cell is filled with blue, it signifies that the item at that position is
consistent with the item in the corresponding position of the clean
evaluation. If the cell is filled with orange, it indicates that the item
at that position in the PGD-1 or advGAN evaluation appears in the
clean evaluation but not in the corresponding position. A green
fill means that the item at that position is present in the PGD-1 or
advGAN evaluation but absent in the clean evaluation.

As we can see, the three evaluations in CDAT are identical,
demonstrating that our CDAT method is able to enhance the adver-
sarial robustness of the sparse recommendation model. By contrast,
under the ACDN and DAT, the PGD-1 and advGAN evaluations
exhibit significant changes compared to the clean evaluation, in-
dicating that the two methods are less effective at improving the
model’s adversarial robustness.

5 RELATEDWORKS
5.1 Adversarial Training Method in

Recommendation
Adversarial training [28, 35, 36] is an effective method to promote
the adversarial robustness of recommendation models. It typically

involves two steps: generating AEs and optimizing model’s param-
eters. APR [10] is the first AT method proposed specifically for
recommendation. It aims to strengthen the robustness and gen-
eralization capabilities of recommendations with BPR. Building
upon APR, the DAT [33] approach further refines the perturbation
by restricting its direction. Additionally, ACDN [34] dynamically
generates adversarial examples based on shared user embeddings.

In summary, due to the widespread sparsity of data in recom-
mendation, existing AT methods may not effectively improve the
adversarial robustness of recommendation models in sparse set-
tings. Moreover, existing AT methods generate AEs by point-wise
perturbation, which can lead to uneven AEs’ quality due to varying
sensitivities to such perturbations, thus hindering the efficacy of AT.
In this paper, we address these issues by utilizing the knowledge
benefitting AT from the auxiliary domain and joint perturbation to
generate AEs.

5.2 Cross-domain Recommendation
In the pursuit of mitigating data sparsity in recommendation mod-
els, researchers introduce CDR methods [11, 13, 18, 32, 37]. Accord-
ing to different CDR tasks, these methods can be categorized into
single-target domain and dual-target domain recommendations.

The single-target domain recommendations are designed to en-
hance the recommendation performance in the sparse target do-
main by leveraging the richer data from the auxiliary domain. Early
techniques employ joint factorization of the user-item interaction
matrices from both the auxiliary and target domains to capture
the common preferences among shared users [12, 16, 24]. In recent
years, many methods based on deep neural networks have been pro-
posed for better improving performance in the sparse target domain
by transfer learning [6, 15]. Dual-target domain recommendations
represent a burgeoning trend in recent years, aiming to simultane-
ously promote the recommendation performance in two relevant
domains [11, 14, 38]. Early methods transfer the knowledge be-
tween two domains by jointly modeling a user’s preference in two
relevant domains like CoNet. However, the users’ representations
from such methods may be harmful to dual-CDR’s performance due
to mixed representations. Recently, researchers have also proposed
some methods [3, 19, 26, 30] to disentangle preferences.

Although the above CDR methods demonstrate promising per-
formance in generalization ability, they almost ignore transferring
adversarial robustness from the auxiliary domain to the target do-
main, which leads to degraded performance of CDR when facing
adversarial attacks. In this paper, we propose the CDAT to tackle
this issue.

6 CONCLUSION
In this paper, we propose a novel AT method called Cross-domain
Distributional Adversarial Training (CDAT) for enhancing the ad-
versarial robustness of the sparse recommendation domain, which
transfers distributional adversarial robustness from the dense auxil-
iary domain to the sparse target domain. In particular, we propose a
Domain adversarial network (Dan) that captures a distribution con-
taining domain-invariant preferences, aligning the user embeddings
of two domains and paving the way for the use of the knowledge
from another domain. We also propose a Cross-domain adversarial
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example generative network (Cdan) that learns a strongly attacking
CDAEs’ distribution of good imperceptibility by joint perturbation
with the guidance of maximizing recommendation losses and the
constraint of the cross-domain adversarial example discriminator
to support CDAT. At last, remarkable improvements in adversarial
robustness on the sparse target domain demonstrate the superiority
of our CDAT.
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