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Abstract—Most existing random walk based network embed-
ding methods often follow only one of two principles, homophily
or structural equivalence. In real world networks, however, nodes
exhibit a mixture of homophily and structural equivalence, which
requires adaptive network embedding that can adaptively preserve
both homophily and structural equivalence for different nodes in
different down-stream analysis tasks. In this paper, we propose a
novel method called Meta-Learning based Adaptive Network Em-
bedding (MLANE), which can learn adaptive sampling strategy
for different nodes in different tasks by incorporating sampling
strategy learning with embedding learning into one optimization
problem that can be solved via an end-to-end meta-learning
framework. In extensive experiments on real datasets, MLANE
shows significant performance improvements over the baselines.
The source code of MLANE and the datasets used in experiments
and all the hyperparameter settings for baselines are available
at https://github.com/7733com/MLANE.

Index Terms—network embedding, meta-learning, sampling
strategy learning

I. INTRODUCTION

Network embedding, which aims at learning low-
dimensional vectorial feature representations for nodes in a
network and preserving structural properties of nodes, has been
attracting increasing interest from the research community
in recent years due to its promising performance in various
network analysis tasks [1]. The existing random walk based
network embedding methods often follow only one of two
principles, homophily or structural equivalence [2], [3]. Ac-
cording to homophily principle, embeddings of the nodes that
are interconnected within the same community (e.g., purple
nodes in Figure 1) should be closer than the embeddings of
the nodes that belong to different communities [4]. In contrast,
according to structural equivalence principle the nodes with
the same structural role will have closer embeddings, even
though they are far away from each other (e.g., two red nodes
in Figure 1) [5].

In real world networks, however, nodes usually exhibit
a mixture of homophily and structural equivalence, which
requires an adaptive network embedding framework that can
adaptively preserve both homophily and structural equivalence
for different nodes in different down-stream analysis tasks [5].

∗ Ning Yang is the corresponding author.
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Fig. 1. Illustration of adaptive embedding.

The problem of adaptive network embedding is not easy due
to the following three challenges.

• Node-Adaptive Sampling In real world networks, ho-
mophily and structural equivalence likely make different
contribution to the embeddings of different nodes, which
suggests that the sampling process should pay more
attention to homophily for some nodes, while to structural
equivalence for other nodes. For example, Figure 1 shows
a piece of Protein-Protein Interaction (PPI) network [6],
where a node represents a Homo Sapiens gene, and
an edge represents an physical interaction between two
genes. In Figure 1, there are three types of nodes,
where the red nodes are the genes related to Epithelial-
Mesenchymal Transition (EMT), the purple nodes are
the genes related to Inflammatory Response (IR), and
the green nodes are the genes related to Coagulation.
Intuitively, we can see that although the EMT (red) nodes
are far away from each other, they are of the same
type due to their similar local topology. Furthermore, the
IR (purple) nodes and Coagulation (green) nodes are of
different types as they are close to different EMT nodes.
Therefore, in order to correctly classify these nodes
based on their embeddings that preserve their structural
properties, the random walks for EMT nodes should
choose sampling strategy BFS (Breadth First Search) with
larger probability, which is in favor of exploring local
neighborhoods, so that the embeddings of EMT nodes can
be biased to preserving their structural equivalence which
is ascertained by their neighborhoods. On the contrary,
the random walks for IR nodes and Coagulation nodes
should prefer to sampling strategy DFS (Depth First
Search), which is in favor of detecting the nodes that are
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connected to a same EMT node, so that their embeddings
can be biased to preserving their homophily.

• Task-Adaptive Sampling In real world, homophily and
structural equivalence may have different importance for
different tasks. For example, for link prediction, pre-
serving homophily is more important than preserving
structural equivalence as links often exist between nodes
within the same community, while for tasks like struc-
ture role identity [7], [8], structural equivalence should
contribute more to the embeddings as nodes with similar
local topology often play similar role. Therefore, it is
desirable that the sampling process can automatically
and adaptively assign different weights to homophily
and structural equivalence for different network analysis
tasks.

• End-to-End Trainability The existing network embed-
ding methods based on random walk treat the sampling
process as a data preprocessing before embedding learn-
ing. Separating the sampling process from embedding
learning, however, likely leads to suboptimal solutions of
the embeddings and the sequent network analysis tasks, as
the optimization objective of a separate sampling process
may be potentially inconsistent, even conflicting, with
that of embedding learning. To avoid this issue, we need
to incorporate the sampling process with network em-
bedding so that the sampling strategy and the parameters
of the embedding model can be learned together in an
end-to-end manner.

In this paper, to overcome the above challenges, we propose
a novel method called Meta-Learning based Adaptive Network
Embedding (MLANE for short). The main idea of MLANE is
to make the sampling process learnable in a meta-learning
framework so that one node can have its own sampling
strategy for its embedding learning to discriminately preserve
its homophily and structural equivalence for different tasks.
For this purpose, MLANE formulates random walk with a
reinforcement learning process, by which the sampling process
is parametrized and can be trained to let node and task decide
the bias to the two search strategies via BFS and DFS. For the
sampling strategy learning, we propose a meta-learning based
policy learning algorithm, by which MLANE can incorporate
the sampling strategy learning with the embedding learning
into one optimization problem that can be solved with an
end-to-end optimizing algorithm based on gradient ascent. The
contributions of this paper can be summarized as follows:

• We propose a novel method called Meta-Learning based
Adaptive Network Embedding (MLANE), which can
adaptively preserve homophily and structural equivalence
for node embeddings by making the random walk based
sampling process learnable with a meta-learning frame-
work. To our best knowledge, this is the first time to
apply meta-learning to network embedding.

• We propose a meta-learner for sampling strategy learning,
which formulates node sampling as a reinforcement learn-
ing process so that the sampling strategy can be learned

for different nodes in different tasks with an end-to-end
optimizing algorithm.

• Extensive experiments conducted on real world networks
across different domains demonstrate the effectiveness of
MLANE. Specifically, the results show that the embed-
dings learned by MLANE can significantly improve the
performance of node classification and link prediction.

The rest of this paper is organized as follows. In Section II,
we introduce the preliminaries and formally define the target
problem of this paper. We present the details of MLANE in
Section III. In Section IV, we empirically evaluate MLANE
on node classification, link prediction and node clustering over
real world datasets, and verify the adaptiveness of MLANE
with case study. At last, we briefly review the related works
in Section V and conclude in Section VI.

II. PRELIMINARIES AND PROBLEM DEFINITION

Let G = (V,E) denote a network, where V and E are
the node set and edge set, respectively. Suppose we want to
learn node embeddings Z = {zv ∈ Rm, v ∈ V } for a specific
network analysis task T , where m is the dimensionality of the
embeddings. To generate the embedding zv of a node v ∈
V for task T , a set of node sequences each of which starts
from v will be sampled as its context Cv , with a learnable
policy function π. Essentially the output of π is a probability
distribution of search strategies according to which next node
can be sampled.

Based on the learnable policy function π, the random walk
can be parametrized as the function S(v;π), of which the
output is just the sampled context, i.e., Cv = S(v;π). Let
C be the contexts of all nodes, i.e., C =

⋃
v∈V Cv . Then

once the contexts of nodes are sampled, they will be fed into
a language model f to generate the node embedding for task
T , i.e., Z = f(C). Similar to existing works, in this paper
we use language model SkipGram [9] to generate the node
embeddings. At last, the embeddings will be used as input of
task T which is evaluated with metric MT : {zv ∈ Rm} → R.
Based on the above definitions, our target problem can be
conceptually formulated as follow:

Given an analysis task T over a given network G = (V,E)
with evaluation metric MT , we want to learn the policy π, so
that the embeddings Z generated by a given language model
f can lead optimal performance of T in terms of metric MT ,
i.e.,

argmax
π

MT

(
Z
)
. (1)

III. PROPOSED MODEL

A. Sampling Strategy Learning

As we have mentioned, the proposed model MLANE treats
the sampling process S as a Markov Decision Process (MDP)
[10] so that the sampling strategy learning can be solved via
a meta-learning framework based on reinforcement learning.
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Fig. 2. Illustration of sampling.
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Fig. 3. Policy network π.

1) State Space: Intuitively, DFS strategy intends to sample
nodes far from source node, while BFS prefers to nodes close
to source node. To reflect the effect of search strategy for a
given source node, we define the state space of a sampling
process combining the source node and the distance from the
current sample node to the source node,

S = {(v, d)|v ∈ V, d ∈ [0, 1, . . . , dmax]}, (2)

where v ∈ V is the source node for which the context is
sampled, d is the distance from current sample node to v, and
dmax is the diameter of the network. Note that the initial state
of the sampling process for a specific node v is s0(v) = (v, 0).

2) Action Space: Now the action space consists of three
possible actions to search the next node, i.e.,

A = {af, as, ab}. (3)

Figure 2 shows an example of random walk starting from node
v and now residing node c which is dc hops apart from v.
Nodes v1, v2, and v3 are the direct neighbors of node c. The
first option af is to move one step forward, i.e., sampling v1
as the next sample node. The second option as is to keep the
distance unchanged, i.e., sampling v2 as the next sample node.
The last option ab is to move one step backward, i.e., sampling
v3 as the next sample node. Note that action af corresponds
to DFS, while actions as and ab correspond to BFS.

3) Policy network: As we have mentioned, policy function
defines a probability distribution over the action space. Based
on this idea, we concretize the policy function with the form
π(a|s;θ), which is the probability of performing action a ∈ A
at state s ∈ S, where θ is the learnable parameters. Particu-
larly, we realize π(a|s;θ) as an multilayer perceptron (MLP)
network [11], as shown in Figure 3, and then θ represents
the weights in the MLP network that will be learned during
the meta-learning. As we can see from Figure 3, we encode

Algorithm 1 MLANE
Input:

Network G = (V,E); Embedding dimensionality m;
Number of walks per node K; Walk length L; Sliding
window size for SkipGram w; Model for analysis task T

Output:
Set of node embeddings Z

1: Randomly initialize parameters θ of policy network π.
2: while policy network π does not converge do
3: Sample contexts C for all nodes with policy π(θ).
4: Generate embeddings Z = SkipGram(C, w,m).
5: Train and evaluate T on Z, R = MT (Z).
6: Update θ according to Equation (9).
7: end while
8: return Z

a state s = (v, d) as the input vector to the MLP network,
which is the concatenation of a one-hot vector representing
node v and a scalar d representing the distance. The output is
a 3-dimensional vector generated by Softmax function, where
Pf, Ps, and Pb are the probabilities of actions af, as, and ab,
respectively.

4) Transition: Suppose we sample K sequences (walks) of
length L for a node v as its context Cv . Let v’s i-th node
sequence c(i)v =< v, v

(i)
1 , . . . , v

(i)
L > (1 ≤ i ≤ K), where v(i)l

(1 ≤ l ≤ L) is the l-th sample node of the i-th sequence
of node v. Note that c(i)v is sampled by the i-th transition
trajectory of MDP, ψ(i)

v =< s
(i)
0 (v), a(i)0 (v), s(i)1 (v), a(i)1 (v),

. . . , s(i)L−1(v), a(i)L−1(v), s(i)L (v), a(i)L (v) >, where s(i)j (v) ∈ S
and a(i)j (v) ∈ A (0 ≤ j ≤ L) are the state and action at step
j, respectively. It is easy to see that the probability of state
transition from s

(i)
j−1(v) to s

(i)
j (v) under action a

(i)
j−1(v) ∈ A

is 1, and hence the probability of ψ(i)
v can be obtained by

ρ(ψ(i)
v ;θ) =

L∏
j=0

π(a
(i)
j (v)|s(i)j (v);θ). (4)

Then the probability of the transition trajectory set Ψv of node
v is

ρ(Ψv;θ) =

K∏
i=1

ρ(ψ(i)
v ;θ). (5)

Therefore, we can evaluate the probability of the transition
trajectory set Ψ of all nodes by the following equation:

ρ(Ψ;θ) =
∏
v∈V

ρ(Ψv;θ). (6)

5) Reward: As mentioned before, MLANE generates the
embeddings Z using SkipGram, i.e., Z = SkipGram(C, w,
m), where w is the sliding window size for SkipGram, and m
is the embedding dimension size. The generated embeddings
Z will be applied to the given task T . We regard the per-
formance MT (Z) of task T over embeddings Z as the final
reward R, i.e., R = MT (Z).
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6) Policy Learning: Different from traditional meta-
learning methods which aim at learning the parameters of
optimizer, MLANE borrows the idea of meta-learning to learn
the parameters θ of the sampling policy function π using
policy gradient. The learning objective is defined as:

argmax
θ

J(θ) = Eρ(Ψ;θ)[R]. (7)

It is easy to show that the gradient of J(θ) is

∇J(θ) ∝ R∂ log(ρ(Ψ;θ))

∂θ
. (8)

The the parameters of policy function can be updated as

θ = θ + α∇J(θ), (9)

where α is learning rate.

B. MLANE and Its Convergence

Now we can incorporate the sampling strategy learning with
the embedding learning into Algorithm 1. Essentially MLANE
is a meta-learner able to learn parameters θ of the policy
network π in an end-to-end fashion. One can refer to the full
paper [12] for the proof of the convergence of MLANE.

IV. EXPERIMENTS

The objective of experiments is to verify MLANE over
tasks of node classification, link prediction, node clustering,
and check the adaptiveness of MLANE with case study. The
experiments are conducted on a single machine with 128GB
RAM and 12 CPU cores at 3.5GHz.

A. Experimental Setting

1) Datasets: We evaluate MLANE on six real world
datasets, including three citation networks (Citeseer1, Cora1,
and HepTh2), one social networks (BlogCatalog3), one e-
commercial network (Amazon4), and one biology network
(PPI [5]). As these datasets contain small and large, sparse
and dense networks, they can reflect the comprehensive char-
acteristics of the network embedding.

2) Baselines: We use nine methods as baselines, including
seven methods (DeepWalk [13], HOPE [14], LINE [15],
SDNE [16], AttentionWalk [17], ProNE [18], GAT [19])
that preserve homophily, four methods that preserve struc-
tural equivalence (struc2vec [8], RiWalk [20], DRNE [21],
Role2Vec [22]), and one method (node2vec [5]) that preserves
both. Specially, GAT is used only for the node classification
task as it needs label information of nodes to supervise the
learning of node embeddings.

3) Metrics: Similar to existing works [16], we use
Micro-F1 and Macro-F1 as the metrics for node classifi-
cation, and precision@k for link prediction.

1http://www.cs.umd.edu/∼sen/lbc-proj/LBC.html
2http://snap.stanford.edu/data/ca-HepTh.html
3http://socialcomputing.asu.edu/datasets/blogcatalog3
4https://github.com/librahu/

B. Node Classification

For node classification, we use the node embeddings gen-
erated by MLANE and baselines as feature vectors of nodes,
and feed them into a one-vs-rest logistic regression classifier
which is trained by using LIBLINEAR package [23], and we
train our model using Macro-F1 as the reward. On each
dataset used for node classification, we randomly sample
80% of nodes as the training set and use the left nodes
as testing set. Note that we don’t use HepTh here as it
contains no label information. From Table I, we can see that
MLANE outperforms the baselines on all datasets. Especially,
on Amazon dataset MLANE achieves 35.4% improvement
over the second best method in terms of Macro-F1. In
Amazon dataset, there are 22 classes of item nodes which
is defined mostly by homophily, and one class of brand nodes
which is defined mostly by structural equivalence. Therefore,
the results demonstrate that MLANE is able to adaptively
capture homophily and structural equivalence with different
weights for the embeddings of different nodes.

C. Link Prediction

We evaluate the performance of MLANE on link prediction
task in terms of precision@k. On each dataset, we randomly
remove 10% links and use the remaining network to learn the
node embeddings. Similar to existing works [16], a link be-
tween two nodes is predicted if the similarity (evaluated by in-
ner product) of the embeddings of that two nodes ranks in top
k. For link prediction, we train our model using precision@k
as the reward. Due to the space limitation, we only show
the results on Citeseer and HepTh. The precision@k are
shown in Figure 5, from which we can see that MLANE
also outperforms the baselines on link prediction. Interestingly,
in our experiments almost all baselines that only preserve
structural equivalence exhibit relatively poor performance on
the link prediction task, which is reasonable as homophily
is usually more important than structural equivalence for link
prediction. At the same time, we see that MLANE shows better
performance than baselines that only preserve homophily. This
is because some links can not be explained by homophily,
which MLANE can adaptively realize during the sampling
process with learned sampling strategy.

D. Verification of Adaptiveness

Now we further verify the adaptiveness of MLANE by a
case study on a subgraph extracted from dataset PPI which
contains three classes of gene nodes including EMT nodes,
IR nodes, and Coagulation nodes. Figure 4 visualizes three
sampling processes of MLANE for classification of the three
nodes, where sampled nodes are marked with orange color
and the visited edges are marked with blue color. The thicker
an edge, the more frequent it is visited. We can obtain the
following observations:
• Figure 4(a) shows a sampling process of an IR node col-

ored with purple. MLANE biases the sampling strategy
for the IR node to DFS which tends to sample the nodes
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TABLE I
PERFORMANCE OF NODE CLASSIFICATION.

Micro-F1 Macro-F1

Dataset Cora Citeseer BlogCatalog PPI Amazon Cora Citeseer Blogcatalog PPI Amazon

Homophily Preserving Methods

DeepWalk 0.811 0.578 0.406 0.218 0.828 0.800 0.531 0.262 0.186 0.113
HOPE 0.491 0.520 0.188 0.134 0.880 0.376 0.456 0.041 0.066 0.118
LINE 0.696 0.468 0.369 0.204 0.891 0.694 0.428 0.237 0.172 0.120
AttentionWalk 0.681 0.564 0.186 0.104 0.790 0.646 0.520 0.037 0.052 0.108
ProNE 0.812 0.593 0.412 0.229 0.844 0.808 0.531 0.253 0.191 0.122
SDNE 0.701 0.484 0.401 0.197 0.886 0.689 0.431 0.257 0.176 0.119
GAT 0.816 0.535 0.407 0.224 0.883 0.806 0.487 0.264 0.183 0.121

Structural Equivalence Preserving Methods

struc2vec 0.297 0.281 0.132 0.086 0.880 0.161 0.244 0.044 0.070 0.127
RiWalk 0.498 0.344 0.176 0.099 0.885 0.440 0.294 0.040 0.064 0.119
DRNE 0.282 0.234 0.172 0.081 0.850 0.063 0.107 0.035 0.033 0.115
Role2Vec 0.795 0.544 0.281 0.152 0.861 0.794 0.505 0.148 0.124 0.127

Both Properties Preserving Methods

node2vec 0.816 0.594 0.411 0.229 0.889 0.808 0.543 0.275 0.188 0.125
MLANE 0.832 0.624 0.416 0.232 0.897 0.832 0.573 0.282 0.197 0.172

(a) Sampling for the purple (IR) node (b) Sampling for the red (EMT) node (c) Sampling for the green (Coagulation)
node

Fig. 4. Visualization of sampling process for different types of nodes.
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Fig. 5. Link prediction results in terms of precision@k.

far from the IR node so that homophily can be preserved
into the embedding of this node.

• Figure 4(b) shows a sampling process of an EMT node
colored with red. MLANE biases its sampling strategy to
BFS which tends to sample more neighbors so that the
structural equivalence can be preserved into its embed-
ding.

• At last, Figure 4(c) shows a sampling process of a
Coagulation node colored with green. Similar to the
sampling process of the IR node, MLANE also biases the
the sampling strategy of this Coagulation node to DFS so
that homophily can be preserved into the embedding of
this node.

In summary, this case study gives us a visual demonstration
of the adaptiveness of MLANE, where the results are consis-
tent with the intuition described in Section I.

V. RELATED WORK

A. Network Embedding

In terms of what kind of structural property is preserved,
the existing network embedding methods can be roughly cat-
egorized into two classes. One class is to preserve homophily
of nodes [2], while the other class is to preserve structural
equivalence of nodes [24]. Homophily regularizes the learned
embeddings with local connectivity so that the interconnected
nodes have similar representations. For example, DeepWalk
[13], LINE [15], AttentionWalk [17], ProNE [18], SDNE [16],
HOPE [14], GAT [19], and DHPE [4] learn node embeddings
by preserving the first-order proximity or high-order proximity
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between nodes. Preserving homophily will benefit tasks like
community detection, as nodes with similar label or features
are more likely to be connected, but often fail in tasks like
structure role identity [7], [8]. In structural role identity,
the nodes with similar local topology, even though without
connection, play the same function and will be identified with
the same role, where structural equivalence between nodes
is the property desired to be preserved in the embedding
learning. For example, by capturing structural equivalence
between nodes, struct2vec [8], RiWalk [20], and DRNE [21]
can generate similar embeddings for nodes of similar roles
while dissimilar embeddings for nodes of different roles. As
in real world nodes often exhibit a mixture of homophily and
structural equivalence, Grover et al. propose a random walk
based model called node2vec, which takes both properties into
consideration via two hyperparameters (p and q) controlling
the probability of which one of the two search strategies,
BFS (preferring to capture structure equivalence) and DFS
(preferring to capture homophily), is chosen at each walk step
[5]. However, all the existing random walk based methods
separate the sampling process from embedding learning, which
makes them nonadaptive and might degrade the embeddings
due to the potentially inconsistent objectives of sampling and
embedding.

B. Meta-learning

Meta-learning aims at learning to learn, which consists of a
learner (model) responsible learning a task and a meta-learner
(optimizer) responsible for learning how to train the learner
[25]. The existing meta-learning methods often focus on
learning the optimizer that can be used for model training [26],
or learning parameter initialization for fast adaptation [27].
Recently, Peng et al. propose a meta-learner to learn undersam-
pling strategy for class-imbalance learning [28]. Different from
the existing meta-learning methods, in this paper we propose a
reinforcement learning based meta-learner to learn the search
strategy for random walk based network embedding learning,
by which the random walk based sampling process can be
incorporated with embedding learning into an optimization
problem that can be solved in an end-to-end fashion.

VI. CONCLUSION

In this paper, we propose a novel method called Meta-
Learning based Adaptive Network Embedding (MLANE).
MLANE incorporates the random walk based sampling pro-
cess with embedding learning into one optimization problem
that can be solved via an end-to-end meta-learning framework
based on reinforcement learning. By making the sampling
process learnable, MLANE can adaptively preserve homophily
and structural equivalence for different nodes in different tasks.
Extensive experiments conducted on real datasets verify that
due to the adaptiveness, MLANE can significantly improve
the performance of node embeddings for down-stream network
analysis tasks.
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