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ABSTRACT

Logs are widely employed in modern systems to record criti-
cal information and serve as an important source for anomaly
detection, which has attracted increasing research interests.
However, logs usually suffer from perturbations and it makes
the existing log-based anomaly detection methods unstable.
In this paper, we aim to solve this problem from the per-
spective of contrastive learning, by which the intrinsic and
robust representations of logs are learned for anomaly detec-
tion. We propose two data augmentation methods to gener-
ate different views at different granularity for log data and
design a deep hierarchical contrastive model for anomaly de-
tection. In the contrastive semantic embedding module, we
fine-tune a language model with a message-level contrastive
loss. And in the contrastive anomaly detection module, we
apply a sequence-level contrastive constraint to assist the de-
tection model to learn robust embeddings for log sequences.
Experiments on three datasets verify the effectiveness of our
proposed method.

Index Terms— Logs, Anomaly Detection, Contrastive
Learning

1. INTRODUCTION

Modern software-intensive systems are becoming much more
large-scale and complex, which makes anomaly detection an
indispensable task to help maintain reliability and stability.
These systems usually produce copious logs, and they are
typically present in the form of semi-structured natural lan-
guages, where critical information describing current circum-
stances is wrote down. When a failure occurs, the operators
can refer to the logs to track the suspicious events, analyze the
underlying causality and find the possible root cause [1, 2].

Most of the existing approaches [3, 4, 5, 6] for log-based
anomaly detection make an assumption explicitly or implic-
itly that logs are generated by the system following a prede-
fined fixed paradigm [7]. That is, the log statements usually
keep stable and the logs are regularly printed along with the

∗Ning Yang and Tao Lin share the corresponding authorship.

execution flows. However, this assumption cannot always be
satisfied due to the challenges from two aspects:

Perturbations in the log messages According to a previ-
ous empirical study [8, 7], the percentage of the ever-changed
log statements is about 20% ∼ 45%. These changes can be
induced by the updates of the log templates. For example,
words can get inserted or appended in the description state-
ments to make the logs more comprehensive, or some words
may be replaced or removed with the business adjustments.

Perturbations in the log sequences As modern system-
s are becoming much more sophisticated, it often entails d-
ifferent modules or services collaborating at the same time.
And the log sequences produced by different modules are in-
terleaved in a common log file. The perturbation in the log
sequence can be caused by the delay or advance of sub-tasks
in some modules. The existing works which model the log
sequence to discover the latent sequential patterns will flag an
anomaly for such situation. However, it may bring about false
alarms if these tasks are not related at all.

In this paper, we propose logContrast, a robust log-based
anomaly detection model based on contrastive learning, aim-
ing to learn the intrinsical representations of logs and log se-
quences for the anomaly detection task. Firstly, inspired by
the contrastive framework [9], we propose two methods of
data augmentations to generate multiple views of differen-
t granularity, i.e., log-level and sequence-level. Specifical-
ly, to handle the perturbations in log messages, we augment
the individual logs using three types of operations. To ad-
dress the perturbations in the log sequences, we also propose
to augment the log sequences in three ways, random repeti-
tion, random deletion, and random shuffling. Then we de-
sign a contrastive deep neural network to model the log se-
quence characteristics to determine whether a log sequence
is an anomaly. We evaluate logContrast on three public real-
world log datasets. The results demonstrate its effectiveness
and robustness in the anomaly detection task.

2. BACKGROUND AND PRELIMINARIES

Logs are generated by large-scale systems to record criticalIC
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Log Parsing

1117843015 2005.06.03 R21-M1-N6-C:J08-U11 2005-06-03-16.56.55.309974 R21-M1-N6-C:J08-U11 RAS KERNEL INFO 

141 double-hummer alignment exceptions

Log Sequence S1

1117848119 2005.06.03 R16-M1-N2-C:J17-U01 2005-06-03-18.21.59.871925 R16-M1-N2-C:J17-U01 RAS KERNEL INFO 

CE sym 2, at 0x0b85eee0, mask 0x05

APPREAD 1117869872 2005.06.04 R04-M1-N4-I:J18-U11 2005-06-04-00.24.32.432192 R04-M1-N4-I:J18-U11 RAS 

APP FATAL ciod: failed to read message prefix on control stream (CioStream socket to 172.16.96.116:33569

log message 

M1

log message 

M2

log message 

M3

APPREAD 1117869876 2005.06.04 R27-M1-N4-I:J18-U01 2005-06-04-00.24.36.222560 R27-M1-N4-I:J18-U01 RAS 

APP FATAL ciod: failed to read message prefix on control stream (CioStream socket to 172.16.96.116:33370

log message 

M4

<*> double-hummer alignment exceptions

Log Sequence S1

"CE sym <*>, at <*>, mask <*>"

ciod: failed to read message prefix on control stream (CioStream socket to <*>:<*>

log event E1

log event E2

log event E3

ciod: failed to read message prefix on control stream (CioStream socket to <*>:<*>log event E3

Fig. 1: Illustration of logs and log parsing

information of runtime, which includes but is not limited to
timestamps, verbosity level, events, and parameters of execu-
tion details. As shown in Fig.1, a raw log message is made
up of a series of tokens and can be seen as a piece of semi-
structured text where certain information is arranged, follow-
ing a predefined way. Then a log sequence is a series of log
messages that belong to a same-time interval or are denoted
by a common task identifier.

Log parsing aims to separate raw log messages into a
constant part and a variable part [10, 11] in a meaningful man-
ner. The constant part contains a group of keywords that rep-
resent the template of a log message, which is also called log
event, and the variable part is comprised of log parameter-
s recording some attribute information like IP address. The
bottom part of Fig.1 shows an example of the parsing results
of logs from the upper part. It can be seen that the parameters
are removed and only the key tokens are retained. Besides,
it can also be found that different log messages can have the
same log events after log parsing, such as log messages M3
and M4. Traditional log-based anomaly detection method-
s such as PCA [12], Invariants Mining [13] and some deep
methods like DeepLog [14] and logAnomaly [15] require log
parsing to obtain log templates/log events as a preprocessing
step. In recent decades, log parsing has been widely investi-
gated and a lot of log parsing approaches are proposed from
different aspects [11, 16], and people can refer to [10] for a
comprehensive survey.

3. PROPOSED METHOD

3.1. Preprocess Module

The preprocessing procedure mainly consists of three steps.
Tokenization We tokenize each raw log message into a

list of tokens with three steps inspired by [17]. First, a log
message is split into candidate tokens with common delim-
iters like white space or punctuation. Then all the tokens con-
taining number digits or special symbols are removed, as they
usually are non-informative parameters and notations. Final-
ly, we replace each capital letters in the remaining tokens with
corresponding lowercase letters. We illustrate this procedure

w1 w2 w3 w4 w5

w1 w2 w3 w4 w5

w1 w2 w3 w4w6 w5

w1 w2 w3 w4 w7

original 

log message

random deletion

random addition

random replacement

(a) Augmentation in log-level.

m1 m2 m3 m4 m5

original 

log sequence

random deletion

random repetition

random shuffle

m1 m2 m3 m4 m5

m1 m2 m3 m4 m4

m1 m2 m3 m5 m4

m5

(b) Augmentation in seq-level.

Fig. 3: Illustration of two kinds of augmentation.

with an log message from a dataset BGL [18]. With tok-
enization, a raw log message ′′1117842974 2005.06.03 R24-
M0-N1-C:J13-U11 2005-06-03-16.56.14.254137 R24-M0-
N1-C:J13-U11 RAS KERNEL INFO 162 double-hummer
alignment exceptions′′ is transformed into token list ′′ras,
kernel, info, double, hummer, aligment, exceptions′′.

Log Augmentation in log-level To learn robust semantic
embeddings for log messages, we apply contrastive learning
on the vectorization process, which requires log data from d-
ifferent views. As shown in Fig.3 (a), three data augmen-
tation techniques are introduced to generate different views
of log messages, i.e., random deletion, random addition, and
random replacement, where the items in the token list are
changed randomly.

Log Augmentation in sequence-level We also generate
different views for contrastive learning at the granularity of
log sequence, as shown in Fig.3 (b). The first is random dele-
tion of log messages from the original log sequences. The
second is random repetition, for which we randomly selec-
t a log message and repeat it several times in its belonging
sequence. The third is random shuffle, that is, we random-
ly select a segment of the log sequence and shuffle the log
messages in it while the other log messages maintain stable.

3.2. Contrastive Semantic Embedding Module

3.2.1. Log Message Encoding

A log message can be considered as a sentence comprising
a line of words, and we adopt the language model to extract
the semantic embedding from it. As a powerful deep repre-
sentation model, BERT has been pre-trained on a huge natu-
ral language corpus and has shown its great learning ability.
In this paper, we follow the practice in [17] and employ the
BERT base model [19] for log message encoding. We use the
average of all token embeddings in a log message as the em-
bedding of the log message. Given i-th log message xi, it is
encoded using BERT as xi, which is xi = BERT(xi).

3.2.2. Fine-tune BERT with Contrastive Learning

To make the semantic embedding more robust, we fine-tune
the BERT model through a contrastive loss computed on the
embeddings of log messages from different views. The em-
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Fig. 2: The framework of the proposed logContrast.

beddings of the related log messages are pulled closer and the
embeddings of the unrelated log messages are pushed much
further. Given a set of M log message xv1, ..., x

v
i , .., x

v
M , we

denote its corresponds embeddings extracted by BERT as
xv
1, ...,x

v
i , ..,x

v
M , where v ∈ {or, rd, ra, rr} represents the

views in log-level and {or, rd, ra, rr} represents different
log augmentations of original log message, random deletion,
random addition and random replacement respectively. Then
we define the total contrastive loss for all given log message
xvi between view va and vb as follow:

Lva,vb = −E
i

log
exp
(
θ(x

va
i ,x

vb
i )

τ

)
exp
(
θ(x

va
i ,x

vb
i )

τ

)
+
N1∑
j=1

exp
(
θ(x

va
i ,x

vb
j )

τ

)
 ,

(1)
where va, vb ∈ {or, rd, ra, rr}. Function θ(∗, ∗) computes

the similarity between two vectors and τ is the temperature
parameter. And for each log message, we sampleN1 negative
samples from the contrasting view. Then we fix the view or
as the core view and compute the contrastive loss between it
and the others, which leads to the total contrastive loss for the
contrastive semantic embedding module defined as follows:

Lcl =
∑

vb∈{rd,ra,rr}

Lor,vb
. (2)

3.3. Contrastive Anomaly Detection Module

3.3.1. Log Sequence Encoding

We employ the classic transformer [20] to encode a sequence
of log messages. Given a sequence of log message Si =
{x1, ..., x|Si|}, it is first input in the fine-tuned BERT encoder
to get the semantic embeddings {x1, ...,x|Si|}. To capture
the context information of a log message in the sequence, we
also add positional embeddings {p1, ...,p|Si|} before putting
them into the transformer layers. The procedure can be de-
fined as si = Transformer(x1+p1, ...,x|Si|+p|Si|).

Anomaly detection can be regarded as a classification
problem with two target classes, anomaly and normal. With

log sequence embeddings {si}, a softmax layer is appended
to compute probability pi,f of each log sequence Si on each
class f . We denote the set of log sequences with labels as SL
and use the cross-entropy loss to construct the classification
objective as follows:

Ld = −
∑

Si∈SL

∑
f∈F

Yi,f ln pi,f , (3)

where Yi,f = 1 denotes that log sequencce Si actually be-
longs to class f , and otherwise Yi,f = 0.

3.3.2. Sequence-level Constraint

To handle the perturbations in the log sequences, we also
implement a contrastive constraint at the sequence level.
Given a series of log sequence Su

1 , ..., S
u
i , .., S

u
N , where

u ∈ {OS,RD,RR,RS} corresponding to the sequence-
level view of original log sequence, random deletion, random
repetition and random shuffle respectively, their embedding
by transformer are su1 , ..., s

u
i , .., s

u
N . Similarly, we define the

loss of the sequence-level contrastive loss as follows:

Lus,ut = −E
i

log
exp
(
θ(s

us
i ,s

ut
i )

τ

)
exp
(
θ(s

us
i ,s

ut
i )

τ

)
+
N2∑
j=1

exp
(
θ(s

us
i ,s

ut
j )

τ

)
 ,

(4)

Lcs =
∑

ut∈{RD,RR,RS}

LOS,ut , (5)

where N2 is the number of negative samples. And the final
total loss for the contrastive anomaly detection module is L =
Ld + Lcs.

4. EXPERIMENTS

4.1. Datasets and Baselines

We choose three representative log datasets HDFS, BGL, and
Thunderbird for evaluation from LogHub [10], as shown in
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Table 2: Performance comparison anomaly detection on original datasets.

Methods HDFS BGL Thunderbird
Precision Recall F1-Score Precision Recall F1-Score Precision Recall F1-Score

PCA 0.9710 0.6280 0.7630 0.9412 0.1538 0.2645 0.9880 0.3200 0.4835
IM 0.8950 1.0000 0.9440 0.4177 0.6279 0.5017 0.9992 0.6316 0.7739

DeepLog 0.9650 0.9040 0.9450 0.3488 0.8333 0.4918 0.7512 1.0000 0.6015
LogRobust 0.9340 0.9950 0.9640 0.7250 0.9886 0.8365 0.5170 0.9984 0.6812

Logsy 0.8600 1.0000 0.9250 0.6797 0.9886 0.8056 0.5273 0.9862 0.6872
LogContrast 0.9798 1.0000 0.9898 0.8482 0.8714 0.8596 0.9971 0.9992 0.9981

Table 3: Performance comparison anomaly detection on noise datasets.

Methods HDFS BGL Thunderbird
Precision Recall F1-Score Precision Recall F1-Score Precision Recall F1-Score

PCA 0.9586 0.6063 0.7426 0.4310 0.0519 0.0926 1.0000 0.0056 0.0111
IM 0.0146 1.0000 0.0288 0.4129 0.5560 0.4739 0.9992 0.6316 0.7739

DeepLog 0.0078 0.3829 0.0153 0.1034 1.0000 0.1874 0.9825 1.0000 0.9912
LogRobust 0.2764 0.1418 0.1874 0.8951 0.3001 0.4503 0.9945 0.9756 0.9850

Logsy 0.0340 0.1936 0.0578 0.1055 1.0000 0.1909 0.9835 1.0000 0.9917
LogContrast 0.9125 0.8670 0.8892 0.7934 0.8087 0.8010 0.9985 1.0000 0.9993

Dataset Description #Messages
HDFS Hadoop distributed file system log 11,175,629
BGL Blue Gene/L supercomputer log 4,747,963
Thunderbird Thunderbird supercomputer log 5,000,000

Table 1: The details of datasets.

Table 1. For HDFS, we use the identifiers to group log mes-
sages into log sequences, and for BGL and Thunderbird, we
slice them based on certain window sizes. To verify the ro-
bustness, we also construct synthetic datasets following the
practice in [7] and randomly add some noise into the original
datasets. The noise ratio is set as 20% for general compari-
son, and we also investigate the influence of different noise
ratio settings. The baseline methods include two classic tra-
ditional methods, PCA [12], IM [13], and three deep learning
methods, DeepLog [14], LogRobust [7] , Logsy [21].

4.2. Overall Performance

Table 2 gives the anomaly detection results on the original
non-noise datasets. Note that for all baselines on original
HDFS datasets, we directly report the results from a com-
prehensive survey [22] without rerunning. As we can see,
proposed logContrast constantly gives the best performance
on all three datasets. It demonstrates that even for non-noise
circumstance, applying the contrastive constraints can benefit
the log-based anomaly detection task. Table 3 shows the re-
sults on the synthetic data where noise are added randomly.
Mostly methods suffer from a drastic drop when confronting
perturbations, however, the proposed logContrast still holds a
pretty good performance. That is because compared with oth-
er method, logContrast can learn more intrinsic embeddings
for logs and be more robust to perturbations.
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Fig. 4: Results of Ablation Study and Parameter Analysis.

4.3. Ablation Study and Parameter Analysis

We denote the variant with only log-level contrastive learn-
ing as logContrast-L and the variant with only sequence-level
as logContrast-S, and apply them on the BGL respectively.
As shown in Fig.4 (a) , both modules play important role in
robust anomaly detection. We also experiment on the noise
BGL dataset with different noise ratio, the results of which
are shown in Fig.4 (b). With the increase in noise ratio, the
performance shows a trend of decline.

5. CONCLUSION

In this paper we propose logContrast for robust log-based
anomaly detection. To handle the perturbations in log data,
we design different data augmentation methods for logs and
learn robust representations with a designed deep hierarchical
contrastive model. Experiments on multiple datasets exhibit
the effectiveness and robustness of the logContrast.
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