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Abstract

Complementary recommendation aims to recommend items that are dissimi-

lar but relevant to, and likely purchased together with, the items a user has

purchased. Although many efforts have been made, the existing works for com-

plementary recommendation still suffer from two shortcomings. First, the ex-

isting works often model the complementarity between items in terms of their

co-occurrence patterns, which overlooks the influence of user intent. In fact,

the intents of the users even with similar historical behaviors might be differ-

ent and consequently need different complements. Second, the existing works

often encode the complementary relationship at item level. In real world, how-

ever, different aspects of an item might contribute different complementarities

to the same item, and the complementary information at aspect-level tends to

be related with the intents of users. To overcome the two shortcomings, in this

paper we propose a novel model called Aspect-level Complementarity Learning

for Intent-aware Complementary Recommendation (AICRec). In particular,

we propose a User Intent Perceiving (UIP) module, which enables AICRec to

differentiate users’ separate intents even though they are in similar scenarios.

Meanwhile, we also devise an Aspect-level Complementarity Learning (ACL)

module to infer an item’s finer-grained complementarities to a user’s intent at

aspect-level, which helps AICRec personalize the recommended complementary
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ofitems with respect to the user’s intent. At last, extensive experiments conducted

on real datasets verify the superiority of AICRec over the state-of-the-art meth-

ods for complementary recommendation.

Key words: Intent-Aware Recommendation, Complementary

Recommendation, Representation Learning

1. Introduction

Recommender systems have been playing an indispensable role in e-commerce

platforms like Amazon and Alibaba, due to their ability to help users find out

contents of interest from immense volume of items. Different from substitute

recommendation where recommended items are similar and interchangeable [1–5

3], complementary recommendation aims to infer items that are dissimilar but

relevant to, and may be purchased together with, the items that a user has

already interacted with [4–7]. For example, a user who has added a laptop to

the shopping cart will often choose a laptop bag or an adapter as a supplement

rather than other kinds of laptops.10

A variety of methods have been proposed for complementary recommenda-

tion, which often model the complementary relationships between items simply

based on their frequent co-occurrence patterns discovered from user historical

behavior data [8–12]. Although significant progress has been made, we argue

that complementary recommendation is still far from being well solved partly15

due to the following challenges:

• The Influence of User Intent The existing methods often model the

complementary relationships with frequent co-purchased patterns, which

overlooks the influence of user intent, i.e., the need of a user or the rea-

son driving a user’s behaviors [13]. In real world, users may emphasize20

different aspects (also known as features) of the same item [14], due to

their different intents. For example, Figure 1 shows that two users have

purchased a laptop, but one pays more attention to the size and color of

the complementary items while the other cares more about their function
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Figure 1: Illustration of motivation.

and shape, which makes their needs for complements different. As the25

users have different intents even in the same scenario, it is inappropriate

to recommend the same complement items to them. Therefore, we need

an effective method to personalize the recommended complements with

respect to users’ intents so that their diverse needs can be satisfied even

they are in similar scenarios.30

• Fine-grained Complementarity The existing methods often encode

an item with only a single embedding to capture the item co-occurrence

patterns, and evaluate the item-level complementarity in terms of the

similarity between item embeddings. We argue that such coarse solution

ignores the fact that items are composed of several aspects [15], and to35

the same item, the complementarities offered by different items are likely

different on different aspects. Again taking Figure 1 as example, a laptop

has the aspects of size, color, shape, and function, etc., and a laptop case

might complement the laptop due to its size, while an adaptor comple-

ments it due to its function. Intuitively, the aspect-level complementary40

information provides rich discriminative signals to identify whether an

item complements a user’s intent. We hence need a method that is able

to capture the fine-grained complementarity at aspect-level so that the

recommended items can best serve the user intent.

In this paper, to address the above challenges, we propose two novel ideas,45
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capturing and quantitatively evaluating the finer-grained complementarity be-

tween aspects rather than items with respect to the perceived user intent, respec-

tively. Based on these ideas, we propose a novel model Aspect-level Complemen-

tarity Learning for Intent-aware Complementary Recommendation (AICRec).50

In particular, to incorporate the influence of user intent, we first propose a User

Intent Perceiving (UIP) module for AICRec to identify a user’s intent based

on the category information of the items (which compose a scenario) that the

user has interacted with. Especially, a unique intent embedding will be gener-

ated for a user via a fusion of the user’s personal embedding with the scenario55

embedding, by which UIP is able to distinguish the different intents of users

even though they are in similar scenarios. To address the challenge of fine-

grained complementarity, we further devise an Aspect-level Complementarity

Learning (ACL) module for AICRec. For an item, ACL will first break it down

to M latent aspect embeddings to characterize its aspect-level information, and60

then learn M aspect-wise complementary embeddings to encode the aspect-level

complementarity of a candidate item to the items that the user have interacted

with. At last, we introduce a Complementary Score Inference (CSI) to at-

tentively figure out the complementary aspects under the guidance of the user

intent, by which AICRec can infer the degree to which a candidate item serves65

a user’s intent. The contributions of this paper can be summarized as follows:

• We propose a novel model called Aspect-level Complementarity Learn-

ing for Intent-aware Complementary Recommendation (AICRec), which

is able to personalize the recommended complements with respect to a

user’s intent and the aspect-level complementarity.70

• We propose two novel modules, the Aspect-level Complementarity Learn-

ing and the Complementary Score Inference, by which AICRec is able to

identify and quantitatively evaluate an item’s aspect-level complementar-

ity to the user intent.

• The extensive experiments conducted on real-world datasets demonstrate75
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mentary recommendation.

2. Related Works

In this section, we briefly review two domains of the works that are mostly

related to our work, including complementary recommendation and intent-aware80

recommendation.

2.1. Complementary Recommendation

In recent years, complementary recommendation has been widely applied in

many applications, such as complementary clothing matching [16–19] and com-

modity bundling for e-commerce platforms [20, 21]. Zhang et al. [5] conduct a85

quality-aware complementary recommendation method in which the item with

the best quality is recommended to the user. Nevertheless, the model ignores the

asymmetric property of complementarity. McAuley et al. [4] and Zhang et al.

[22] use LDA model to extract topics from item text informations. Rakesh et al.

[23] propose LVAE, which links two variational auto-encoders to learn latent fea-90

tures over the reviews of items. Liu et al. [24] and Zhang et al. [25] leverage the

graph structure to learn product representations in different relationship spaces.

However, the user preferences and fine-grained semantic relationships are not

taken into consideration in these works. He et al. [8] utilize multiple semantic

spaces to encode fine-grained semantics of anchor items (items which have been95

purchased by a user). However, only mapping anchor items to multiple seman-

tic spaces cannot match the representations of candidate items generated in a

low-dimensional embedding space, resulting in semantic misalignment. Wang

et al. [9] propose a multi-step path constraint algorithm, which violates the

non-transitivity of complementarity. Wan et al. [26] devise Triple2vec which100

aims at capturing the relationships among (item, item, user) triples. However,

Triple2vec neglects the higher-order complementarity when items are as a com-

bination. Xu et al. [10] extend the Triple2vec method and propose a knowledge-

aware complementary recommendation algorithm, which considers asymmetric,

5



Journal Pre-proof
Jo
ur

na
l P

re
-p

ro
ofnon-transitive, transductive and higher-order complementarity but neglects the105

granularity of complementarity. Hao et al. [27] propose a novel diversified

complementary recommendation method, P-Companion. However, the comple-

mentary items recommended by P-Companion focus on diversity which may

impair the accuracy of recommendations. The most recent work is proposed by

Yang et al. [28], which can infer complementary relationships with an in-depth110

reasoning over a knowledge graph. By contrast with the existing works for

complementary recommendation, our AICRec is able to simultaneously discern

the unique intents of users and capture the finer-grained complementarities at

aspect-level, which establish the superiority of AICRec.

2.2. Intent-aware Recommendation115

Intent-aware recommendation aims to discern the motivation of users’ be-

haviors by learning latent intent representations [29]. Chen et al. [30] propose to

learn a user intent embedding by applying attention mechanism to the categories

of users’ historical behaviors. Similarly, Tanjim et al. [31] encode the collabo-

rative signals between similar users with self-attention mechanism to capture a120

user intent. Zhu et al. [32] propose to represent user intents with the embed-

dings that are generated through a key addressing over a memory network of a

user’s historical interactions. Wang et al. [33] point out that each item a user

interacted with may serve a variety of purposes, and propose a Mixture Channel

Purpose Routing Network to generate purpose-based specific representations for125

items. In [34], they further propose to capture a user’s multiple intents with a

neural intent-driven model.

Recently, researchers have also proposed to utilize side information for the

modeling of user intent. For example, Wang et al. [35] emploit knowledge

graph to capture users’ motivation hidden in their complex historical behaviors.130

Yang et al. [36] propose a feedback interactive neural network to estimate

user’s potential intent which incorporates the negative feedback information.

Liu et al. [37] realize that there exist multiple intents within a basket, and

propose a framework named as Multi-Intent Translation Graph Neural Network
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in a basket for capturing a user’s multiple intents. Hao et al. [38] think of a

user’s intent as being time-evolving and propose a Dynamic Evolution based

Deep Hierarchical Intention Network (Dy-HIEN), which applies a hierarchical

dynamic embedding learning method to capture the drift of a user’s intent over

sessions. Basically, the existing methods for intent-aware recommendation lack140

finer-grained analysis on how an item matches a user’s intent at aspect-level,

which is in striking contrast with our work.

3. Basic Definition And Problem Formulation

Let U and V denote the user set and item set, respectively. For a user u ∈ U ,

let Vu
t = 〈vu1 , · · · , vut 〉 be u’s interaction sequence up to time step t, where vi ∈ V145

is the item that u interacts with at time step i, 1 ≤ i ≤ t. Let C be the set

of item categories, and c(v) : V 7→ S be the mapping function that returns

the category of an item v. Based on the category mapping function, we define

the interaction scenario (context) of a user u till time step t as the category

sequence Cut = 〈c(vu1 ), · · · , c(vut )〉. Then the target problem of this paper can be150

formulated as follow:

Target Problem Given a training set D = {(u,Vu
t , v

u
t+1)} (u ∈ U), where

vut+1 is the ground-truth item that user u interacts with at time step t + 1, we

want to learn a ranking model AICRec(u,Vu
t , v) to evaluate the complementarity

ru,v of a candidate item v to user u’s intent, such that

vut+1 = argmax
v∈V\Vu

t

AICRec(u,Vu
t , v). (1)

4. The Proposed Model

In this section, we first give a high-level view of the proposed AICRec model,

then present its components in detail, and finally describe its learning. For

simplicity, in the following text, we will omit the superscript u when the context155

is unambiguous.
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Figure 2: The architecture of AICRec.

4.1. Overview of AICRec

The architecture of AICRec is shown in Figure 2, from which we can see

that AICRec consists of three modules, the User Intent Perceiving (UIP), the

Aspect-level Complementarity Learning (ACL), and the Complementary Score160

Inference (CSI). We first use a toy example to illustrate the running of AICRec.

Let’s suppose a user u has purchased an ”iphone” and an ”iphone case” in

the first two time steps, i.e., u’s historical interaction set is V2 = {v1, v2},
where v1 and v2 are two one-hot encodings representing iphone and iphone case,

respectively. Now we want AICRec to estimate the complementarity score r̂u,v,165

i.e., the degree to which a candidate item v, say ”charger”, is complementary

to the user u’s interaction history V2. At first, AICRec will invoke UIP to

encode the user u’s intent into the intent embedding zu. UIP will generate two

scenario embeddings, s1 for v1, and s2 for v2, based on the the categories of

the historical interaction items, c(v1) = ”cell phone” and c(v2) = ”accessory”,170

respectively, and then generate zu by fusing {s1, s2} with u’s user embedding

xu. Suppose we consider two latent aspects which correspond to ”color” and

8
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−→a (1)
v1 and −→a (1)

v2 to represent the color aspects of v1 and v2, respectively, and the

aspect embeddings −→a (2)
v1 and −→a (2)

v2 to represent the size aspects of v1 and v2,175

respectively. Then ACL will generate the summary color aspect embedding

−→p (1) for the whole history by aggregating the historical items’ color aspect

embeddings −→a (1)
v1 and −→a (1)

v2 , and the summary size aspect embedding −→p (2) by

aggregating the historical items’ size aspect embeddings −→a (2)
v1 and −→a (2)

v2 . With a

matching between the summary color aspect embedding −→p (1) and the candidate180

item v’s color aspect embedding ←−a (1)
v , and a matching between the summary

size aspect embedding −→p (2) and the candidate item v’s size aspect embedding

←−a (2)
v , ACL will generate the aspect-level complementarity embeddings y(1) for

color aspect and y(2) for size aspect, respectively. At last, AICRec will invoke

CSI to infer the complementary score r̂u,v of the candidate item v to the user185

u based on the aspect-level complementarity embeddings {y(1),y(2)} and the

user intent embedding zu. The whole procedure of AICRec can be formally

described as follows:

(1) For a user u, UIP captures u’s unique intent with the intent embedding

zu, which is generated with the fusion of the user embedding xu and the190

scenario embeddings {s1, · · · , st}. Here si is the embedding of the category

c(vi) of u’s i-th interaction vi ∈ Vt, 1 ≤ i ≤ t.
(2) At the same time, ACL encodes the aspect-level complementarities of the

candidate item v ∈ V \ Vt to the user u’s historical interactions Vt, with

the M aspect-level complementarity embeddings {y(1), · · · ,y(M)}. In order195

to capture the directional information of complementary relationship, ACL

learns two embeddings for each item to reflect its different roles. If an item vi

is a historical interaction of the user, ACL generates the antecedent item em-

bedding −→e vi to represent it, while if it is a candidate item, its succedent item

embedding←−e vi will be generated. With the antecedent item embedding−→e vi200

of a historical interaction item v as input, M aspect encoders are invoked

to generate vi’s aspect embeddings {−→a (1)
vi , · · · ,−→a (M)

vi }. By an aspect-wise

9
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Vt, ACL obtains M summary aspect embeddings {−→p (1), · · · ,−→p (M)} for the

whole interaction history Vt. Similarly, for a candidate item v, ACL extracts205

its M latent aspect embeddings {←−a (1)
v , · · · ,←−a (M)

v } based on its succedent

item embedding. At last, ACL generates the M aspect-level complementar-

ity embeddings {y(1), · · · ,y(M)} based on the summary aspect embeddings

of Vt and the latent aspect embeddings of candidate item v.

(3) Finally, AICRec will invoke CSI to infer the complementarity score r̂u,v to210

evaluate the degree to which a candidate item v is complementary to the

user u’s intent, by integrating the aspect-level complementarity embeddings

{y(1), · · · ,y(M)} with respect to the intent embedding zu.

4.2. User Intent Perceiving

The task of UIP module is to capture a given user unique intent based on the215

user’s interaction history Vt = 〈v1, · · · , vt〉. Intuitively, a user’s intent is often

revealed by the category information of the items she has already interacted

with. For example, if a user has purchased items of sports and dressing cate-

gories, she may want to choose sportswear next time, while if she is browsing

household items, she may be preparing a new home. Meanwhile, even though220

two users interact with the same items, they also likely have different intents

because user intent also depends on the user’s individual information. There-

fore, to accurately capture the user intent, we need to consider both the user

itself and the scenario Ct = 〈c(v1), · · · , c(vt)〉, where c(vi) ∈ C is the category of

item vi, 1 ≤ i ≤ t.225

Based on the above idea, we first obtain the user embedding xu ∈ Rd×1 of u

and the scenario embedding si ∈ Rd×1 of c(vi), where d is the embedding size,

with the following transformations:

xu = Wuu, (2)

si = Wcci, (3)

10
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user u and the category c(vi), respectively, Wu ∈ Rd×|U| and Ws ∈ Rd×|C| are

learnable matrices. Then we generate the user intent embedding zu ∈ Rd×1

by fusing the user embedding xu and the scenario embeddings {s1, · · · , st} as

follow:

zu = W (1)
z

[
xu ⊕ σ

(
W (2)

z (s1 ⊕ s2 ⊕ · · · ⊕ st) + b(2)z

)
+ b(1)z

]
, (4)

where ⊕ is concatenation operation, W
(1)
z ∈ Rd×(d+d), W

(2)
z ∈ Rd×td, b

(1)
z ∈

R2d×1, and b
(2)
z ∈ Rd×1 are learnable parameters. Here σ(·) is a nonlinear

activation function, for which we choose ReLU in this paper. The insight of

Equation (4) is that the user intent represented by zu is dependent on the

scenario represented by the scenario embeddings {s1, · · · , st} as well as the user230

information encoded in the user embedding xu, by which we can distinguish the

personalized intent for the users even though their scenarios are identical.

4.3. Aspect-level Complementarity Learning

As we have mentioned before, ACL is responsible for encoding the directional

complementarity offered by a candidate item v to a user’s historical interactions235

Vt at each latent aspect.

4.3.1. Directional Item Embedding

To preserve the asymmetric and non-transitive property of complementary

relationships [10], we use two different transformations to learn item embeddings

for the items in Vt and the candidate items in V\Vt, respectively. Let v ∈ R|V|×1

be a one-hot vector representing item v ∈ V. Then for an item v ∈ Vt, we

represent it with its antecedent embedding −→e v ∈ Rd×1 which is generated as

follow:

−→e v =
−→
W ev, (5)

where
−→
W e ∈ Rd×|V| is a learnable antecedent item embedding matrix. At the

same time, for a candidate item v ∈ V \ Vt, we represent it with its succedent

11
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←−e v =
←−
W ev, (6)

where
←−
W e ∈ Rd×|V| is a learnable succedent item embedding matrix.

4.3.2. Latent Aspect Embedding

To capture the fine-grained complementarity at aspect-level, we first decou-

ple an item embedding into M latent aspect embeddings by invoking a set of

aspect encoders. Given the antecedent item embedding −→e v of an item v ∈ Vt,
we choose an MLP as the aspect encoder due to its simplicity, to extract v’s

k-th latent aspect embedding −→a (k)
v ∈ Rd×1, which is defined as

−→a (k)
v = Q

(k)
1 σ(Q

(k)
2
−→e v + b

(k)
2 ) + b

(k)
1 , (7)

where Q
(k)
1 ∈ Rd×d, Q

(k)
2 ∈ Rd×d, b

(k)
1 ∈ Rd×1, and b

(k)
2 ∈ Rd×1 are learnable240

parameters of the k-th aspect encoder. Similarly, for a candidate item v ∈ V\Vt,
we can obtain its M latent aspect embeddings {←−a (k)

v } (1 ≤ k ≤M) by applying

the same aspect encoders (Equation (7)) to its succedent item embedding ←−e v.

It is noteworthy that for the same item v, its latent aspect embeddings will be

different when it plays different roles. When v is a historical interaction item245

of some user, its latent aspect embeddings are extracted from its antecedent

item embedding −→e v, while when it acts as a candidate item, they come from

its succedent item embedding ←−e v.

Intuitively, it is desirable that the decoupled latent aspect embeddings can

carry aspect information as independent as possible. For this purpose, we im-

pose the following orthogonal loss on the latent aspect embeddings during the

training stage:

La =
∑

v∈V

ww−→AT
v

−→
Av − I

ww2

F
+
ww←−AT

v

←−
Av − I

ww2

F
, (8)

where ‖ · ‖F is Frobenius norm,
−→
Av ∈ Rd×M and

←−
Av ∈ Rd×M are two matrices

with {−→a (k)
v } and {←−a (k)

v } as columns, respectively, and I is an identity matrix.250

12
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Once we obtain the M latent aspect embeddings {−→a (k)
v } for each histori-

cal interaction item v ∈ Vt, we will generate M summary aspect embeddings

{−→p (k) ∈ Rd×1} (1 ≤ k ≤ M) for the whole historical interaction set Vt. Intu-

itively, the k-th summary aspect embedding −→p (k) is supposed to be an aggrega-

tion over the k-th latent aspect embeddings of all the items in Vt, and different

items in Vt contribute unequally. Therefore, to quantitatively differentiate the

contributions of the latent aspect embeddings of different items, we employ the

following attention mechanism to generate −→p (k):

−→p (k) =
∑

v∈Vt
α(k)
v
−→a (k)

v , (9)

α(k)
v =

exp(
q(k)T−→a (k)

v√
d

)

∑
v′∈Vt exp(

p(k)T−→a (k)

v
′√

d
)

, (10)

where α
(k)
v is the attention coefficient of v to the k-th summary aspect embed-

ding, and q(k) is a learnable query vector.

4.3.4. Aspect-level Complementarity Embedding

At last, we embed the complementary relationship from a candidate item

v ∈ V \Vt to a user’s historical interactions Vt at each latent aspect. Intuitively,

the complementarity at k-th aspect depends on the aspect embedding ←−a (k)
v of

the candidate item v and the summary aspect embedding −→p (k) of Vt. Therefore,

we straight generate the M aspect-level complementarity embeddings {y(k) ∈
Rd×1} (1 ≤ k ≤M) with a fusion of ←−a (k)

v and −→p (k) conducted by the following

MLP:

y(k) = Wyσ
(
W
′
y(−→p (k) ⊕←−a (k)

v ) + b
′
y

)
+ by, (11)

where Wy ∈ Rd×d, W
′
y ∈ Rd×2d, by ∈ Rd×1, and b

′
y ∈ Rd×1 are learnable255

parameters.

4.4. Complementary Score Inference

So far, we have obtained the M complementarity embeddings {y(k)} (1 ≤
k ≤ M), each of which encodes the complementarity of the candidate item v

13
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final complementary score r̂u,v as the estimate of the likelihood that the user

u will interact with v because of the intent of the user. The idea here is that

different aspects serve the user’s intent with different weights. For this purpose,

we adaptively weigh the contributions of the different aspects with the attention

coefficients learned by an attention mechanism. In particular, we take the user’s

intent embedding zu as the query vector and aggregate the aspect-level comple-

mentarity embeddings {y(k)} into one intent-aware complementarity embedding

yu,v ∈ Rd×1 with the following attention mechanism:

yu,v =
M∑

k=1

βky
(k), (12)

βk =
exp(zu

Ty(k)

√
d

)
∑M

i=1 exp(zu
Ty(i)√
d

)
. (13)

Finally, we obtain the complementary score r̂u,v with the following two-layer

MLP:

r̂u,v = σ
(
W
′
r (Wryu,v + b

′
r) + br

)
, (14)

where Wr ∈ Rd×d, W
′
r ∈ Rd×d, br ∈ Rd×1, and b

′
r ∈ Rd×1 are learnable

parameters.

4.5. Learning of AICRec260

A training set D is a set of quads (u,Vt, v+, v−), where v+ is the positive item

with which user u interacts after t and v− is a negative item. For a positive

item v+, we utilize the popularity based sampling strategy [39] to generate

three negative items, where the more frequent an item v (v 6= v+) occurs in the

dataset, the higher its sampling probability. Then following the popular pairwise

ranking criteria of BPR [40], we define the complementary loss as follow:

Lc =
1

|D|
∑

(u,Vt,v+,v−)∈D
log(r̂u,v+ − r̂u,v−), (15)

where a pair (v+, v−) will incur penalty if r̂u,v+ < r̂u,v− . Finally, by integrating

the orthogonal loss La defined in Equation (8) and the complementary loss Lc,
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Tmall 154,216 319,727 1,297 2,288,397

TaoBao 39,363 228,060 5,547 442,660

Superstore 793 1,862 17 9,994

Table 1: The statistics of datasets.

the overall loss can be defined as

L = Lc + λLa + ‖Θ‖2, (16)

where Θ represents all learnable parameters of AICRec and λ is a factor con-

trolling the contribution of the orthogonal constraint. In experiments, we adopt

Adam [41] as the optimizer to minimize L, due to its ability to adaptively de-

termine the learning rate during the gradient descent.

5. Experiments265

The goal of the experiments is to verify the superiority of AICRec by an-

swering the following research questions:

• RQ1: How does AICRec perform as compared to the state-of-the-art

complementary recommendation methods?

• RQ2: How does AICRec benefit from its components UIP and ACL?270

• RQ3: How do the hyper-parameters affect the performance of AICRec?

• RQ4: How can the superiority of AICRec be illustrated with intuitive

and visualizable case studies?

5.1. Experiment Setting

5.1.1. Datasets275

We conduct the experiments on the following three real datasets, which are

summarized in Table 1.
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users with more than 319K items falling into 1,297 categories, which are

collected within the six consecutive months until Nov. 11, 2015.280

• TaoBao 2: Taobao dataset contains more than 442K interactions of more

than 39K users with more than 228K items falling into more than 5K

categories during the week from November 25 to December 3, 2017.

• Superstore 3: Superstore dataset is derived from American supermar-

kets, which contains more than 9K interactions of 793 users with more285

than 1,862 items falling into 17 categories.

For each dataset, we filter out the users or items with less than 3 interaction

records. At the same time, we randomly partition each dataset into training

set, validation set, and test set with proportions of 60, 20, and 20 percent,

respectively.290

5.1.2. Baselines

To verify the superiority of AICRec, we compare it with the following state-

of-the-art complementary recommendation methods:

• Monomer [8]: Monomer is a complementary recommendation research

designed to mine local compatibility relationships between pairs of items.295

• Triple2vec [26]: Triple2vec is a representation learning method, which

models the complementary relationships of triples (item, item, user) linked

by the same basket.

• KA-CRL [10]: KA-CRL is also a representation learning method which

models the complementary relationships between item sequences.300

1https://tianchi.aliyun.com/dataset/dataDetail?dataId=42
2https://tianchi.aliyun.com/dataset/dataDetail?dataId=649
3https://tianchi.aliyun.com/dataset/dataDetail?dataId=93284
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mendation method, which aims at recalling as many categories of items

as possible with an item embedding as input.

• ASLI [31]: ASLI is a sequential recommendation model based on convo-

lutional networks, which utilizes self-attention mechanism to capture the305

dependence between items within a sequence, and a time-sensitive convo-

lutional neural network to capture users’ potential intents.

5.1.3. Evaluation Protocol

We evaluate AICRec and the baseline methods with the widely adopted

metrics HR (Hits Ratio) and NDCG (Normalized Discounted Cumulative Gain).310

HR@k is the ratio of the users whose ground-truth is ranked in the first k

positions, while NDCG@k accounts for the position of the hit, which assigns

higher weight to the hits at higher positions.

Let Su
k be the number of the testing user u’s instances that a ground-truth

item is ranked in the corresponding recommended top-k item list, which is

defined as

Su
k =

Nu∑

i=1

I
(
rank(vui , l

u
i ) ≤ k

)
, (17)

where vui is the ground-truth item of u’s i-th testing instance, lui is the corre-

sponding recommended top-k item list, Nu is the number of the testing instances

of u, rank(v, l) is the rank of item v in list l, and I(x) is the indicator function

that returns 1 if x is true, otherwise 0. Then HR@k and NDCG@k can be

defined as follows:

HR@k =
1

|Ut|
∑

u∈Ut
I(Su

k ≥ 1), (18)

NDCG@k =
1

|Ut|
∑

u∈Ut

1

Nu

Nu∑

i=1

I
(
rank(vui , l

u
i ) ≤ k

)

log2

(
1 + rank(vui , l

u
i )
) . (19)

where Ut is the set of testing users.
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Tmall

Monomer 0.2830 0.4264 0.6402 0.1708 0.2236 0.3083

Triple2vec 0.2901 0.4354 0.6577 0.1992 0.2306 0.3125

P-Companion 0.2752 0.4150 0.6315 0.1701 0.2199 0.3002

KA-CRL 0.3175 0.4631 0.6910 0.2428 0.2933 0.3419

ASLI 0.3797 0.4843 0.7009 0.2762 0.3103 0.3681

AICRec 0.4875 0.5957 0.7834 0.3830 0.4180 0.4625

%Improv. 28.39% 23.00% 11.77% 38.66% 34.70% 25.64%

TaoBao

Monomer 0.1192 0.1890 0.4083 0.0941 0.1118 0.1793

Triple2vec 0.1269 0.1926 0.4208 0.0982 0.1161 0.1836

P-Companion 0.1126 0.1837 0.4015 0.0920 0.1115 0.1737

KA-CRL 0.1487 0.2237 0.4515 0.1077 0.1312 0.1943

ASLI 0.1543 0.2231 0.4692 0.1103 0.1340 0.2001

AICRec 0.2352 0.3331 0.5896 0.1678 0.1992 0.2593

%Improv. 52.43% 46.90% 25.66% 52.13% 48.65% 29.58%

Superstore

Monomer 0.0772 0.1457 0.3780 0.0470 0.0675 0.1277

Triple2vec 0.0538 0.1158 0.3212 0.0271 0.0466 0.0940

P-Companion 0.0655 0.1282 0.3253 0.0381 0.0578 0.1179

KA-CRL 0.0647 0.1353 0.3294 0.0399 0.0616 0.1218

ASLI 0.0764 0.1412 0.3588 0.0385 0.0583 0.1052

AICRec 0.1078 0.2047 0.4865 0.0666 0.0976 0.1628

%Improv. 39.63% 40.49% 28.70% 41.70% 44.59% 27.48%

Table 2: Performance Comparison.

5.2. Performance Comparison (RQ1)315

Table 2 shows the performances of AICRec and the baseline methods over

the three datasets, where the best runs per metric are marked in boldface,

the best runs among baseline methods are underlined, and the performance

improvements (%Improv.) in percent compared with the best baseline methods

are also presented in the last line of the results on each dataset. We can see that320

AICRec achieves a significant improvement of the recommendation performance

on all the three datasets. In particular, we have the following observations on

the experimental results:

1. The methods that take user individual informations into account (AICRec,

Triple2vec, KA-CRL, and ASLI) achieve better recommendation perfor-325

mance than non-personalized methods (P-Companion and Monomer). Usu-
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needs become more complex. The experimental results imply that the rec-

ommendation methods without encoding of user-specific informations are

difficult to meet the personalized needs of users.330

2. The methods that consider session-wise relationships (AICRec, KA-CRL,

ASLI) perform better than the methods that focus only on pair-wise re-

lationships (Monomer, Triple2vec, P-Companion). This is because the

session-wise context offers more high order dependence information from

which the user preferences can be captured more accurately.335

3. AICRec performs much better than the most recent complementary rec-

ommendation method KA-CRL. The main reason is due to the ability of

AICRec to model the aspect-level complementarities between items and

capture more semantics based on the self-attention mechanism.

4. At last, we can see that P-Companion does not perform well on both340

TaoBao and Tmall, possibly because it is designed to recommend diverse

items from different categories. However, complementary items usually

belong to the same category, for example, shirts and pants are in dressing

category, and computers and keyboards are in electronic product category.

Therefore, pursuing diversity only may impair the accuracy of complemen-345

tary recommendation.

5.3. Ablation Experiments (RQ2)

Now we investigate the effectiveness of the two modules of AICRec, User

Intent Perceiving (UIP) and Aspect-level Complementarity Learning (ACL), by

comparing AICRec with its two variants AICRec-U and AICRec-A. AICRec-U350

removes the UIP module by substituting the user original embedding u for the

user intent embedding zu in Equation (13), while AICRec-A removes the ACL

module by substituting −→e v and←−e v for −→p v and←−a v in Equation 11, respectively.

The results of ablation experiments are shown in Table 3, from which we can

make the following observations:355
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Tmall

AICRec-U 0.4528 0.5577 0.7582 0.3502 0.3842 0.4318

AICRec-A 0.3565 0.4709 0.6982 0.2638 0.3006 0.3543

AICRec 0.4875 0.5957 0.7834 0.3830 0.4180 0.4625

TaoBao

AICRec-U 0.2287 0.3244 0.5647 0.1632 0.1890 0.2461

AICRec-A 0.1609 0.2243 0.4747 0.1161 0.1405 0.2030

AICRec 0.2352 0.3331 0.5896 0.1678 0.1992 0.2593

Superstore

AICRec-U 0.0882 0.1647 0.4294 0.0488 0.0735 0.1346

AICRec-A 0.0705 0.1412 0.3647 0.0415 0.0671 0.1273

AICRec 0.1078 0.2047 0.4865 0.0666 0.0976 0.1628

Table 3: Results of Ablation Experiments.

• Compared with AICRec, AICRec-U substantially degenerates in comple-

mentary recommendation performance on all cases. This result justifies

our assumption that the complementary relationships depend on user in-

tents, and shows that the user intent captured by AICRec can help per-

sonalize the complementary items.360

• Similarly, on all cases AICRec also achieves better performances than

AICRec-A. This result is consistent with our expectation that comple-

mentary recommendation will benefit from the modeling of aspect-level

complementarity by which richer and finer-grained semantic information

can be captured.365

• Interestingly, we also note that AICRec-U performs worse than AICRec-

A, which shows that the capturing of user intent plays a more important

role than the modeling of aspect-level complementarity. We would not be

surprised in this result if we take a close look at Equation (13), where

the user intent embedding zu works as the query vector to determine370

the attention coefficients of the aspect-level complementarity embeddings

{y(k)}. Therefore, once the user intent embedding zu degenerates to the

original user embedding u, the pooling of the aspect-level complementarity

embeddings will lose the personalization offered by user intents.

20



Journal Pre-proof
Jo
ur

na
l P

re
-p

ro
of

(a) HR@10 (b) NDCG@10

Figure 3: Tuning of Embedding Size d.

(a) HR@10 (b) NDCG@10

Figure 4: Tuning of the Numbers of Aspect-Encoders M .

5.4. Hyper-parameter Tuning (RQ3)375

In this section, we investigate the impact of the three hyper-parameters,

the embedding size d, the number of aspect encoders M , and the orthogonal

constraint coefficient λ in Equation (16), on validation sets in terms of HR@10

and NDCG@10.

5.4.1. Embedding Size d380

Figure 3 shows the results of the tuning of the embedding size d. We can

see that basically, the curves rise first as the increasing embedding size leads

to more encoding capacity, and then decline due to the overfitting incurred by
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(a) Results on HR@10 (b) Results on NDCG@10

Figure 5: Tuning of Orthogonal Constraint Coefficient λ.

the excessive embedding dimensionality. According to the results, we set the

embedding size d to 256 on datasets Tmall and TaoBao, and 64 on Superstore.385

5.4.2. Number of Aspect Encoders M

Figure 4 shows the results of the tuning of the number of aspect encoders M .

Recall that AICRec invokes the aspect encoders to decouple an item embedding

into M latent aspect embeddings so that we can evaluate the complementarity

at aspect-level. From Figure 4 we can see that the curves rise as M is increas-390

ing, i.e., factorizing into more latent aspects, which again verifies that learning

complementarity at aspect-level benefits the performance of complementary rec-

ommendation. However, excessive M will also cause overfitting which makes the

curves go down after the optimal values of M . Therefore, we finally set M to 4

on Tmall and TaoBao, and 3 on Superstore.395

5.4.3. Orthogonal Constraint Coefficient λ

Recall that the coefficient λ in Equation (16) balances the contribution of the

orthogonal constraint La defined in Equation (8). As we can see from Figure 5,

on all datasets the performances improve as λ increases from 0, which confirms

that the orthogonal constraint can serve the purpose to enforce the independence400

on the decoupled latent aspect embeddings for better capturing of aspect-level

complementarity. However, when λ exceeds a threshold, the performance curves
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Figure 6: Case studies of AICRec’s complementary recommendation.

begin to drop. This is because the excessive independence reduces the mutual

information, and consequently degrades the modeling of the correlation, between

the decoupled latent aspects. According to the results shown in Figure 5, we405

finally set λ to 0.3 on TaoBao and 0.4 on Tmall and Superstore, so that an

optimal trade-off can be achieved for the independence and correlation between

the latent aspects.

5.5. Case Study (RQ4)

In this section, we conduct visualizable case studies to illustrate AICRec’s410

ability to personalize the complementary recommendation with respect to the

intents of users. For this purpose, from the test set of Superstore we randomly

select two pairs of users where each pair of users have similar purchasing history.

As shown in Figure 6, the first pair of users, Eric and Matt, both bought

the similar items of lightings, storages and printer papers. However, the next415

items purchased by Eric and Matt are Checking Pencils and Wall Hangings,

respectively, which shows that the intent of Eric is on office items while the intent

of Matt is on home improvement items. In other words, they have different

23



Journal Pre-proof
Jo
ur

na
l P

re
-p

ro
of

(a) Personalized Intent Embeddings zu (b) Aspect Attention Coefficients βk

Figure 7: Visualization of personalized intents and aspect attention coefficients.

intents even though they have similar purchasing history. We can see that the

top-3 items (Clips, Colored Pencils, and Bookcases) recommended by AICRec420

for Eric are of the category of office items, and most of the items (Wall Clock,

Hanging Binders, and Copy Paper) recommended by AICRec for Matt are more

consistent with the category of home improvement items. Similarly, the users of

the second pair, Rob and Seth, have similar historical purchased items including

Phone and Headset. However, the next item purchased by Rob is a phone line425

splitter, while that purchased by Seth is a wireless speaker, which implies that

the intent of Rob is on the complements of Phone while the intent of Seth is more

on the general electronics. Again we can see that the top-3 items recommended

by AICRec for Rob and Seth are different so that their diverse needs can be

satisfied. Basically, we argue that these cases demonstrate that AICRec is able430

to fulfill the personalized complementary recommendation due to its ability to

capture the unique intents of the users from their historical behaviors even if

they are similar.

To further explain why AICRec can make personalized complementary rec-

ommendations for users in similar scenarios, in Figure 7 we visualize the intent435

embeddings zu (see Equation (4)) of the sample users and the aspect atten-
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dimensionality of zu is 64, so for clarity, we rearrange the embedding vector

components to fill an 8× 8 matrix column by column. As shown in Figure 7(a),

the intent embeddings learned by AICRec for the sample users of each pair are440

obviously dissimilar from each other, which suggests that their different intents

are discerned by AICRec due to the User Intent Perceiving module. At the same

time, from Figure 7(b) we can observe that for a sample user, a recommended

item has discrepant attention coefficients on different latent aspects because of

the user’s unique intent, which indicates that different aspects of an item con-445

tribute different complementarities to the user’s intent. For example, AICRec

discovers that for Eric, the complementarity on the latent aspect 1 should obtain

more attention, while for Matt, the winner is the latent aspect 3.

6. Conclusion

In this paper, we propose a novel model called Aspect-level Complementarity450

Learning for Intent-aware Complementary Recommendation (AICRec). Differ-

ent from the existing methods for complementary recommendation, AICRec is

able to differentiate users’ intents even they are in similar scenarios, and infer

an item’s finer-grained complementarities to a user’s intent at aspect-level, with

the User Intent Perceiving (UIP) module and the Aspect-level Complementar-455

ity Learning (ACL) module, respectively. The results of extensive experiments

conducted on real datasets demonstrate the superiority of AICRec over the

state-of-the-art methods for complementary recommendation.
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