
Predicting Neighbor Distribution in Heterogeneous Information Networks

Yuchi Ma∗ Ning Yang† Chuan Li‡ Lei Zhang§ Philip S. Yu¶‖

Abstract

Recently, considerable attention has been devoted to the

prediction problems arising from heterogeneous information

networks. In this paper, we present a new prediction task,

Neighbor Distribution Prediction (NDP), which aims at

predicting the distribution of the labels on neighbors of a

given node and is valuable for many different applications in

heterogeneous information networks. The challenges of NDP

mainly come from three aspects: the infinity of the state

space of a neighbor distribution, the sparsity of available

data, and how to fairly evaluate the predictions. To address

these challenges, we first propose an Evolution Factor Model

(EFM) for NDP, which utilizes two new structures proposed

in this paper, i.e. Neighbor Distribution Vector (NDV) to

represent the state of a given node’s neighbors, and Neighbor

Label Evolution Matrix (NLEM) to capture the dynamics of

a neighbor distribution, respectively. We further propose a

learning algorithm for Evolution Factor Model. To overcome

the problem of data sparsity, the learning algorithm first

clusters all the nodes and learns an NLEM for each cluster

instead of for each node. For fairly evaluating the predicting

results, we propose a new metric: Virtual Accuracy (VA),

which takes into consideration both the absolute accuracy

and the predictability of a node. Extensive experiments

conducted on three real datasets from different domains

validate the effectiveness of our proposed model EFM and

metric VA.

1 Introduction

As part of the recent surge of research on information
networks, considerable attention has been devoted to
prediction problems in heterogeneous information net-
works. The existing researches, however, mainly focus
just on the predictions around a single link. For exam-

∗School of Computer Science, Sichuan University, Chengdu,

China. scu.Richard.Ma@g-mail.com
†Corresponding author. School of Computer Science, Sichuan

University, Chengdu, China. yangning@scu.edu.cn
‡School of Computer Science, Sichuan University, Chengdu,

China. lcharles@scu.edu.cn
§School of Computer Science, Sichuan University, Chengdu,

China. leizhang@scu.edu.cn
¶Department of Computer Science, University of Illinois at

Chicago, Chicago, USA. psyu@uic.edu
‖Institute for Data Science, Tsinghua University, Beijing,

China.

ple, some works are interested in predicting whether or
when a link will be built in the future [4, 6, 7, 16, 14, 12],
and some works concern predicting strength of a link,
such as predicting the ratings that customers will give to
items or locations [9, 11, 3, 2]. Existing researches sur-
prisingly pay little attention to the prediction of neigh-
bor distributions, where states of neighbors are consid-
ered as a whole.

Neighbor Distribution

of User A

Movie Genre :

Action| Crime
Movie 2

Movie 1

User A

Romance Action Crime
Movie Genre :

Romance

Figure 1: Neighbors Distribution

Fig. 1 offers an illustration of neighbor distribution.
The left part of Fig. 1 illustrates User A has two movie
nodes as its neighbors, which means User A rented two
movies. The neighbor distribution of node User A is the
distribution of labels on its neighbor nodes, as shown by
the right part of Fig. 1, where the neighbors of a given
node have equal weight, and the weight of a neighbor
node is uniformly divided by its labels.

The neighbor distribution of a node usually evolves
over time. For example, a user might rent movies of
different genres as his/her taste changes. Such evolution
makes the prediction of neighbor distributions valuable
for many different applications.

Motivating Example For an online sports video
provider, the type distribution of subscribers is crucial
to develop its sales strategy. The provider may be
misled, if it only takes the recent sales data into
consideration, and ignores the evolutionary feature of
the type distribution. For example, the soccer fans are
the major subscribers on May 2014, which may lead
the provider to put more soccer advertisements online.
However, the soccer fans are increasing slowly on May,
and become the major subscribers on June 2014, as the
opening of four-yearly soccer celebration ”World Cup”.
Traditional recommender system methods may ignore
the tiny increase of soccer fans on May.

784 Copyright © SIAM.
Unauthorized reproduction of this article is prohibited.

In this paper, we aim at the problem of predict-
ing the neighbor distribution of a given node in a het-
erogeneous information network, which has three main
challenges we have to overcome:

• Infinite state space of neighbor distribu-
tions Since the fraction of a label is a real value, the
number of possible states of a neighbor distribution is
theoretically infinite. Traditional temporal models such
as Markov chain cannot serve our goal because they of-
ten assume a finite state space.

• Sparsity of heterogeneous links In most cas-
es, the links between one specific node and its hetero-
geneous neighbors are relatively sparse compared with
the huge volume of a whole data set, e.g., ”publish-
ing” in DBLP, ”rating” in Netflix and ”checking in”
in Foursquare. The sparsity of links between heteroge-
neous nodes makes it harder to mine sufficient mean-
ingful patterns for individuals.

• Fairly evaluating predictions Not all nodes are
equally predictable, hence the traditional metrics that
just take absolute accuracy into account are unable to
appropriately assess the predictions for the nodes that
are less predictable. We need a new metric that can
treat every node fairly.

In this paper, inspired by the idea of Factor Model
[17, 18], we propose an Evolution Factor Model (EFM)
to accurately predict neighbor distributions from the
sparse data. Our main contributions can be summarized
as follows:

(1) We introduce an Evolution Factor Model (EFM) for
accurately predicting neighbor distributions. EFM
employs our proposed data structures, Neighbor
Distribution Vector (NDV) and Neighbor Label
Evolution Matrix (NLEM), to represent the infinite
state space of a neighbor distribution and capture
the evolution of neighbor distributions respectively.

(2) We propose a new prediction metric, Virtual Ac-
curacy (VA), which takes into consideration both
the absolute accuracy and the difficulty of a pre-
diction to fairly evaluate the prediction results of
nodes with different predictabilities.

(3) We conduct extensive experiments on three real
datasets, and compare EFM with an empirical
method and two existing methods. The results
validate the performance of our proposed model,
algorithm and accuracy metric.

The rest of this paper is organized as follows.
We give the problem definition and formalization in
Section 2. In Section 3, we describe our prediction
model EFM, and further present the learning algorithm
for EFM. We discuss the predictability of nodes and

propose a prediction metric in Section 4. We present the
experimental results and analysis in Section 5. Finally,
we discuss related works in Section 6, and conclude in
Section 7.

2 Problem Definition

2.1 Heterogeneous Information Network A het-
erogeneous information network contains multiple types
of objects and links. In this paper, we only consid-
er those heterogeneous information networks with star
network schema [13], i.e., links only exist between the
center type of nodes as target nodes, and several oth-
er types of nodes as attribute nodes. For example,
in Location Based Social Network, the target nodes are
users, and the attribute nodes can be venues, ratings or
tips.

We denote the heterogeneous information networks
with star network schema by G = 〈V,E〉, where V is
the node set and E is the link set. We denote the
target and attribute node set by X ⊂ V and U ⊂ V
respectively. The nodes and the links in networks are
being constructed and destructed over time. In order
to capture the dynamics, we use time window, which
is denoted by T , to capture the neighbor distribution
with timeliness from dynamic networks. The node set
and the attribute node set in T are denoted by VT and
UT . We use Th, Tc and Tf to represent the historical,
current and future time windows respectively.

2.2 Label Distribution Vector
Assuming the universal label set of a given attribute

node set U is denoted by βU =
{
β
(1)
U , ..., β

(i)
U , ..., β

(n)
U

}
,

where β
(i)
U is a label, and n is the number of label types,

the definition of label distribution vector is given as
follow:

Definition 2.1. Label Distribution Vector (LD-
V) For a given attribute node u ∈ U , its LDV,−→v u ∈ R

n,
is defined as:

−→v u = (v(1)u , ..., v(i)u , ..., v(n)u),(2.1)

where n is the number of all attribute nodes’ label types;

v
(i)
u =

Iu(β
(i)
U

)
∑

n
k=1 Iu(β

(k)
U

)
, Iu(β

(i)
U) is 1 if u has the label β

(i)
U ,

and 0, otherwise.

LDV measures the label distribution of an attribute
node, which is fixed. For example, the labels of an
article are subject areas, thus the LDV depicts the
direction of this article.

2.3 Neighbor Distribution Vector

785 Copyright © SIAM.
Unauthorized reproduction of this article is prohibited.

Definition 2.2. Neighbor Distribution Vector
(NDV) For a given target node x ∈ X , the NDV of
x’s attribute node neighbors U ′

T ⊆ UT in time window
T , −→w x(U ′

T) ∈ R
n, is defined as:

−→w x(U ′
T) = (w(1)

x , ..., w(n)
x),(2.2)

where n is the number of the given attribute nodes’ label

types; w
(i)
x =

∑
u∈U′

T
(v(i)

u)+1

|U ′
T |+n

, i ∈ [1, n].

Hereinafter, we just denote a NDV by −→w x if the
context is unambiguous. Note that: (1) For smoothing,
we add 1 in the numerator and n in the denominator
of w

(i)
x . (2) A node has an NDV corresponding to each

different type of attribute node neighbors. For example,
in DBLP, there are two type of attribute nodes, which
are ”Articles” and ”Journals”; therefore, the target
node ”Scholar” should have two NDVs, one for its
”Article” neighbors and the other for its ”Journal”
neighbors.

2.4 Problem Statement
Based on NDV, we can formally state the problem of
Neighbor Distribution Prediction (NDP) as follow :

Assigned the historical, current and future time
window Th, Tc and Tf respectively, given a target node
x and its NDV of x’s attribute node neighbors U in time
window Th and Tc, we want to predict −→w x(U ′

Tf
).

3 Evolution Factor Model

In this section, we describe our Evolution Factor Model
(EFM). At first, we briefly introduce the basic idea of
Factor Model.

3.1 Evolution Factor Model
Recommender system methods based on latent factor
matrix model take the data in historical and current
time window as a whole, but dismiss the evolution of the
network. In order to capture the dynamics, Evolution
Factor Model first stores the probability of changes
from one label to another, which leads to the following
definition of Neighbor Label Evolution Matrix (NLEM).

Definition 3.1. Neighbor Label Evolution Ma-
trix For a given node x, its Neighbor Label Evolution
Matrix of attribute nodes U from time window Tp to Tq,

denoted by L
<U ′

Tp
,U ′

Tq
>

x ∈ R
n×n, is a matrix in which a

cell Lx(i, j) is the probability that x’s neighbor label
changes from β(j) to β(i), i.e.,

Lx(i, j) = P (β(i)|β(j)).(3.3)

Evolution Factor Model Based on NLEM, for a
given target node x, we can predict its NDV −→w x(U ′

Tf
) as

the transformation of its historical NDV, −→w x(U ′
Th+Tc

)

through its NLEM L
<U ′

Th
,U ′

Tc
>

x , which leads to our EFM
as follows:

−→w x(U ′
Tf
) = L

<U ′

Th
,U ′

Tc
>

x ×−→w x(U ′
Th+Tc

).(3.4)

DB 0.7

ML 0.2

DM 0.1

IP 0

Scholar A

DB

ML

DM 0.251

IP

Scholar A

DB ML DM IP

DB

ML

DM 0.22 0.22 0.55 0.02

IP

NLEM

The Historical NDVThe Predicted NDV

DB

ML

DM 0.058

IP

Scholar B

DB 0

ML 0.2

DM 0

IP 0.8

Scholar B

Figure 2: An example of Evolution Factor Model

Fig. 2 gives an example that shows how EFM work-
s. In Fig. 2, there are four labels representing differen-
t research directions: DB (Data Base), ML (Machine
Learning), DM (Data Mining), IP (Image Processing).
A cell (i, j) of NLEM represents the probability that
scholars change their research directions from i to j.
By given an NLEM learned from historical data, and
the current NDVs of Scholar A and Scholar B, we can
infer their next NDVs by transforming their historical
NDVs by the learned NLEM.

Note that the essence of the matrix product in EFM
is different from that in a general factor model. In a
general factor model, the matrix product is static, which
consider the data in historical and current time window
as a whole. In contrast, NLEM, in our EFM, which
can capture the changes from historical time window to
current time window agilely, and changes as the given
target node’s neighbor labels evolve over time.

3.2 Model Learning
To overcome the issue of data sparsity, in the light of the
heuristic knowledge that similar individuals have similar
behaviors, we first apply a clustering algorithm to all the
target nodes, and learn the NLEM for the cluster which
x belongs to. According to this idea, given target node
x and the node set X ′ consisting of the nodes belonging
to the same cluster of x, we can learn NLEM as follow:

L
<U ′

Th
,U ′

Tc
>

x = argmin
L

∑

x′∈X ′

ǫ2,(3.5)

786 Copyright © SIAM.
Unauthorized reproduction of this article is prohibited.

where ǫ = |−̂→w x′(U ′
Tc
) − −→w x′(U ′

Tc
)|, L ∈ R

n×n,
−̂→w x′(U ′

Tc
) = L×−→w x′(U ′

Th
).

Note that −̂→w x′(U ′
Tc
) is an estimate of −→w x′(U ′

Tc
) for

target node x′. So NLEM is actually defined as the
optimal matrix that minimizes the overall error of the
estimates over all target nodes in X . Thus, for learning
NLEM, we adopt least square method to establish linear
regression, indicating the NDVs in Th and Tc as follows:

L
<U ′

Th
,U ′

Tc
>

x = (XTX)−1XTY,(3.6)

where

X =





X(1) = −→w x(1)(U ′
Th
)

...
X(N) = −→w x(N)(U ′

Th
)



 ,

Y =





Y (1) = −→w x(1)(U ′
Tc
)

...
Y (N) = −→w x(N)(U ′

Tc
)



 .

The learning algorithm for EFM is shown in Algorithm
1.

Algorithm 1 Learning Algorithm for EFM

(x, Th, Tc,XTh
,XTc

,U ,K)

INPUT:
x: A given node;
Th: Assigned historical time window;
Tc: Assigned current time window;
XTh

: A subset of X in time window Th;
XTc

: A subset of X in time window Tc;
U : The given attribute node set;
K: The parameter of K-means;

OUTPUT:

L
<U ′

Th
,U ′

Tc
>

x : The NLEM needed to be learned;
1: X ′ = Φ, X = 0, Y = 0, W = {x′ | x′ ∈ XTh

,XTc
};

2: for each x′ ∈ W do
3: Compute −→w x′(U ′

Th
) and −→w x′(U ′

Tc
);

4: end for
5: Do K−means on W based on the similarities be-

tween −→w x′(U ′
Th
);

6: X ′ = {the nodes of the cluster that x belongs to};
7: for i = 1 to |X ′| do
8: X(i) = −→w x(i)(U ′

Th
);

9: Y (i) = −→w x(i)(U ′
Tc
);

10: end for

11: Compute L
<U ′

Th
,U ′

Tc
>

x according to Equation (3.6),
where inverse matrix is computed by Gauss Jordan
method;

In our learning algorithm, any classical clustering
algorithm is qualified for our learning algorithm. We
choose K-means as the clustering algorithm, where

the similarities are measured by Euclidean distances
between NDVs. The selection of K is discussed in
Section V.

3.3 Prediction
Given a target node x, its NDV −→w x(U ′

Th+Tc
) and the

learned NLEM L
<U ′

Th
,U ′

Tc
>

x , the prediction of −→w x(U ′
Tf
)

can be made by EFM(Equation (3.4)).

4 Prediction Metric

4.1 Normalized Absolute Accuracy
We can intuitively measure the absolute accuracy of pre-
dictions for the given node x in terms of the Euclidean

distance between a true −→w x and its estimate −̂→w x.
By Definition 2, components of an NDV are positive

and the sum of them is equal to 1, so the Euclidean
distance between any two NDVs is less than or equal
to

√
2. Then we can define the normalised absolute

accuracy as follow:

ηx = 1− d(−̂→wx,
−→wx)√
2

,(4.7)

where d(−̂→w x,
−→w x) is the Euclidean distance between −̂→w x

and −→w x.

4.2 Predictability
As we have mentioned, it is unfair to assess a prediction
just in terms of absolute accuracy, since the predictabil-
ity of nodes are different.

Intuitively, the predictability of a node is relevant
to its susceptibility to the similar homogeneous nodes.
Specifically, the easier the node can be influenced by
others, the more disordered its temporal pattern is, and
the greater its predictability is. For example, in a giv-
en research field, the leading scholars’ directions are d-
ifficult to capture, because they change their research
directions rarely and such changes are mainly break-
throughs. These changes can hardly be predicted com-
pared with their long-term stable studies. In contrast,
the research direction of a PhD candidate is more likely
influenced by his/her supervisor or the leading scholars.
Inspired by this observation, we can define Prediction
Difficulty as the measure on how difficult to predict a
given node’s NDV.

Definition 4.1. Prediction Difficulty (PD) For a
node x, the prediction difficulty of its NDV of attribute
node neighbors U ′

T in time window T , denoted by
gx(U ′

T) is defined as:

gx(U ′
T) = 1− hx(U ′

T)/2,

where hx(U ′
T) is the temporal entropy of x’s NDV in

787 Copyright © SIAM.
Unauthorized reproduction of this article is prohibited.

time window T , and

hx(U ′
T) = −∑n

i=1 w
(i)
x (U ′

T)lognw
(i)
x (U ′

T).

Note that, w(i) ∈ (0, 1), so hx(U ′
T) > 0, and

when w(i) = 1/n, ∀i ∈ [1, n], hx(U ′
T) reaches the

maximum, which equals −
∑n

i=1
1
n
logn

1
n

= 1. Thus,
hx(U ′

T) ∈ (0, 1] and gx(U ′
T) ∈ [1/2, 1). In Definition

4, we use temporal entropy hx(U ′
T) to measure how

disordered a node’s temporal pattern is. We can
see the more disordered the temporal pattern, the
greater the temporal entropy, and consequently the
less the prediction difficulty, which is in line with our
expectation.

4.3 Virtual Accuracy
Now we further define Virtual Accuracy based on abso-
lute accuracy and prediction difficulty as follow:

Definition 4.2. Virtual Accuracy (VA) For a pre-
diction of −→w x(U , Tf), its Virtual Accuracy, denoted by
δx, is defined as:

δx = ηx × gx,(4.8)

where ηx is the absolute accuracy and gx is the predic-
tion difficulty.

As Equation (4.8) shows, we define VA of a predic-
tion as the product of the absolute accuracy and the
predictability of that prediction. Since ηx and gx are
both nonnegative, it is obvious that VA favors the pre-
dictions whose absolute accuracy and difficulty are both
great. As we can see in later experiments, ηx is negative-
ly correlated with gx. Thus even the absolute accuracy
of a difficult prediction is low, the VA of it can still
be expected be not low since its prediction difficulty is
large. On the other hand, even the absolute accuracy
of an easy prediction is high, the VA of it is expected to
be low due to its small prediction difficulty.

5 Experimental Evaluation

5.1 Datasets
We learn the NLEM from the NDVs in Th and Tc. For
predicting neighbor distribution, we take the NDVs in
Th + Tc as training set, and the NDVs in Tf as test set.

The datasets we use to validate our model and
algorithm are from three different domains, DBLP (a
Coauthor Network), Netflix (a Movie Rental Network),
and Foursquare (a Location Based Social Network).
The summary of datasets is shown in Table 1

DBLP [15] indexes more than about 230 million ar-
ticles and contains massive links to home pages of com-
puter scientists. The labels of ”Article” contain 25 di-
rections on Computer Science, thus an NDV of a ”Schol-

ar” node consists of 25 components. By assigned histor-
ical, current and future time window Th = [2006, 2010),
Tc = [2010, 2011) and Tf = [2011, 2012], we random-
ly select 1000 scholars who published articles in all the
three time window.

Netflix [1] contains about more than 100 million
rating records from about 480, 000 customers over about
17, 000 movie titles. The labels of ”Movie” contain
28 genres crawled from the website IMDb [5], thus
an NDV of a ”User” node consists of 28 components.
By assigned historical, current and future time window
Th = [Apr.12th 2005, Oct.12th 2005), Tc = [Oct.12th

2005, Nov.12th 2005) and Tf = [Nov.12th 2005, Dec.12th

2005], we randomly select 1, 000 users who have movie
rating records in all the three time window.

Foursquare[2] involves about 4.3 million friend-
ships and about 80, 000 check-in tips of users during
3 years. The labels of ”Venue” contain 8 categories giv-
en by Foursquare. By assigned historical, current and

future time window Th = [0
th

day, 966
th

day), Tc =

[966
th

day, 996
th

day) and Tf = [996
th

day, 1026
th

day],
we randomly select 500 users who have check-in records
during in all the three time window.

5.2 Baseline
In order to demonstrate the effectiveness of our EFM,
we compare our method with the following baseline
methods:

• MVM (Mean Value Method) MVM is an empirical
method. It takes the mean of the latest NDVs of the
nodes in the cluster that the predicted node belongs
to, as the estimate of the next NDV of a given node.

• MF (Basic Matrix Factorization)[17] MF is proposed
by B. Webb to solve the movie recommender problem
in Netflix Price. MF assumes the features of objects
can be expressed as a series of factors, and different
types of objects have factors with the same amount.
When predicting the preference of the given objects
of type A for the objects of type B, the preferences
(which is called ”ratings” in many cases) can be
expressed as the product of the factors of the given
objects of type A and B. The general expression of
factor model is:

R = PQT ,(5.9)

where P ∈ R
N×D is the factor matrix of the objects

of type A. Q ∈ R
M×D is the factor matrix of objects

of type B. N and M are the number of the objects
of type A and the number of the objects of type B,
respectively. D is the factor number.

788 Copyright © SIAM.
Unauthorized reproduction of this article is prohibited.

Dataset Network The type of The type of #Neighbor’s lables #Predicted Nodes
predicted nodes predicted node’s neighbors

DBLP heterogeneous author paper 25 1000

Netflix heterogeneous user movie 28 1000

Foursquare heterogeneous user venue 8 500

Table 1: Summary of Datasets.

• BiasedMF (Biased Matrix Factorization)[9] Bi-
asedMF is proposed by Paterek, which is an exten-
sion of Basic Matrix Factorization. BiasedMF adds
biased rates to the objects of either type. The pre-
diction formula is:

r̂u,m = bu + bm +
∑n

k=1 pu,k · qm,k,(5.10)

where r̂u,m is an estimate of rate that the object u
of type A gives to the object m of type B. The pu,k
and qm,k are the cells of the factor matrixes of type
A and type B respectively. bu and bm are the biases
of object u and m respectively.

In our experiments, we set the parameters of MF
and BiasedMF as learning rate η = 0.001 and punishing
parameter λ = 0.02, as suggested by Paterek [9] and
Gorrell et al. [3]. We choose the number of NDV
components as the latent feature numbers in MF and
BiasedMF. Thus the feature numbers of DBLP, Netfilix
and Foursquare are 25, 28 and 8 respectively.

5.3 The Determination of K
Learning Algorithm for EFM requires the number of
clusters, K, as the input when it invokes a K-means
procedure, so we have to determine K before we start
our experiments. For each dataset, we first randomly
select 500 nodes from it, then apply our model to
make predictions for these nodes and choose the K
that maximizes the average absolute accuracy of the
predictions. As Fig. 3 shows, we finally get K = 5
for DBLP, K = 1 for Netflix, and K = 155, 156 for
Foursquare during [2 : 00, 3 : 00] and [11 : 00, 12 : 00]
respectively.

0.00%

33.30%

66.60%

99.90%

1 34 67 100

A
b

so
lu

te
 A

cc
u

ra
cy

k

DBLP Netflix

(a) DBLP and Netflix

75.00%

80.00%

85.00%

90.00%

1 251 501

A
b

so
lu

te
 A

cc
u

ra
cy

k

[2:00,3:00] [11:00,12:00]

(b) Foursquare

Figure 3: The Selection of K

5.4 The Validation of Predictability
Now we investigate how the absolute accuracy of a pre-
diction correlates with its prediction difficulty. For each
dataset, we first rank the nodes by PD in descending or-
der, then divide the nodes into five groups. The nodes
in a same group have equal PD. Finally we observe the
absolute accuracies by applying EFM and three baseline
methods, MVM, MF and BiasedMF, on the five groups
respectively.

The results are shown in Fig. 4. We can see
that the absolute accuracies of the methods we use in
the experiments decrease in overall with the increase
of the prediction difficulty. Such result validates our
assumption that the more disordered the temporal
pattern of a node is, the greater its predictability is.
It also shows the necessity to assess a model by a
fair metric which should take the predictability into
consideration.

Note that, on Foursquare, the absolute accuracies of
baseline methods do not decrease linearly with PD. It is
because the human’s daily routines are not all the same,
which leads to the fluctuation of absolute accuracies
of baseline methods. The absolute accuracy of EFM,
however, has a linear decrease with PD. It is because
EFM is not limited to the recognition of daily pattern,
but instead takes the evolution regularity (represented
by the neighbor label evolution matrix in EFM) into
consideration. For example, the office workers who
like nightlife can go to the nightclub for sleepover only
on Weekends. For the nodes of that type, the two
empirical methods can not perform as expected because
the activities of sleepover on weekends are not common
to everyone (which is the reason why MVM’s curve
fluctuates), or to an individual on everyday (which is the
reason why the curve of MF and BiasedMF fluctuate).

5.5 The Comparison between EFM and Base-
line Methods
In this part, we compare the virtual accuracy of EFM
with three baseline methods: MVM, MF and BiasedM-
F. The summarized result is shown in Fig. 5 and the
detailed result is listed in Table 2. Our remarks on the
result are as follows:

789 Copyright © SIAM.
Unauthorized reproduction of this article is prohibited.

(a) DBLP

60.00%

68.00%

76.00%

84.00%

0.1680 0.1984 0.2220 0.2530 0.3224

Prediction Difficulty (PD)

EFM MVM MF BiasedMF

(b) Netflix

25.00%

48.00%

71.00%

94.00%

0.3205 0.5133 0.6845 0.9492 0.9892

A
b

so
lu

te
 A

cc
u

ra
cy

Prediction Difficulty (PD)

30.00%

53.20%

76.40%

99.60%

0.3718 0.5792 0.7731 0.9856 0.9918

Prediction Difficulty (PD)

(c) Foursquare [2:00, 3:00] (d) Foursquare [11:00, 12:00]

76.00%

84.00%

92.00%

100.00%

0.0011 0.0117 0.0249 0.0339 0.1148

A
b

so
lu

te
 A

cc
u

ra
cy

Prediction Difficulty (PD)

Figure 4: The Relationship between Absolute Accuracy
and Prediction Difficulty on Three Datasets

0.30

0.40

0.50

0.60

DBLP Netflix Foursquare

(2:00~3:00)

Foursquare

(11:00~12:00)

V
ir

tu
al

 A
cc

u
ra

cy

EFM MVM MF BiasedMF

Figure 5: The Comparison of VA between EFM and
Baseline Methods

Foursquare Foursquare
Method DBLP Netflix [2:00, 3:00] [11:00, 12:00]

EFM 0.5049 0.4960 0.5722 0.5606

MVM 0.4359 0.4216 0.5179 0.5032
MF 0.4937 0.4917 0.3793 0.3619

BiasedMF 0.4360 0.4217 0.4381 0.4852

Table 2: Virtual Accuracies of EFM, MVM, MF and
BiasedMF

(1) EFM performs far better than MVM on all the
datasets, while MVM has the worst performance
on the Netflix and DBLP datasets.

(2) Although having the worst performance on the
two Foursquare datasets, MF does have a good
performance on Netflix dataset comparing with
the other baseline methods, since MF is originally
proposed for the movie recommendation problem
in Netflix. EFM, however, still performs better
than MF, which is because EFM can take into
consideration not only the profile of the predicted
nodes, but also the evolution regularity.

(3) As shown in Fig. 5, EFM outperforms BiasedMF,

which performs similarly to MVM on DBLP and
Netflix, but far worse on Foursquare.

(4) EFM outperforms MVM, MF and BiasedMF espe-
cially on Foursquare. This is because the three base-
line methods only pay attention to the daily pattern
(MVM) or the profile of users (MF and BiasedMF).
However, the activities in Foursquare are limited to
not only the daily pattern or profile of users, but al-
so the evolution regularity over weeks, even months.

In summary, EFM is a robust and effective method.
The VA of EFM is generally better than all the baseline
methods.

6 Related Work

Three domains are relevant to our work, namely link
prediction, rating prediction and factor model.

Link Prediction: Hasan et al. [4] first introduces
supervised learning to predict whether a link will be
built in the future. Wang et al. [16] introduces
probabilistic model for link prediction. Leroy et al.
[6] solves the cold start problem in link prediction.
Lichtenwalter et al. [7] proposes new perspectives and
methods in link prediction. Taskar et al. [14] propose
a method to address the problem of link prediction in
heterogeneous networks, based on the observations of
the attributes of the objects. Sun et al. [12] extends
the traditional link prediction to relationship prediction,
which not only predicts whether it will happen, but also
infers when it will happen. However, Sun’s work, still
focuses on the predictions of a single link.

Rating Prediction (Recommender System):
Basically, the methods predicting ratings of links fal-
l into two categories: memory-based algorithms and
model-based algorithms. The memory-based algorithms
directly make predictions based on homogeneous neigh-
bors of a given node [8, 10, 19], while model-based al-
gorithms make predictions based on a prediction model
learned in advance. Savia et al.[11] proposes a predic-
tion model based on bayesian networks. These existing
methods pay insufficient attention to the evolution of
neighbor distributions.

Factor Model: Factor Model assumes the features
of objects can be expressed as a series of factors, which
is also called Matrix Factorization (MF). MF is first
proposed by Webb[17] to solve the movie recommender
problem in Netflix Price. Based on Webb’s work,
G. Gorrell et al.[3] optimize the learning rate and
the punishing parameter in MF. Paterek [9] proposes
Biased Matrix Factorization (BiasedMF) to improve
the performance of MF. However, the existing methods
can not capture the dynamics of neighbor distributions

790 Copyright © SIAM.
Unauthorized reproduction of this article is prohibited.

agilely, which is exactly why we propose a new model
EFM for our goal.

7 Conclusion

In this paper, we present a new prediction problem,
Neighbor Distribution Prediction in heterogeneous in-
formation network. To address this problem, we pro-
pose an Evolution Factor Model (EFM), which takes
Neighbor Label Evolution Matrix (NLEM) as the dy-
namic factor, and predicts the next NDV of a given
node by transforming its current NDV by the NLEM.
We also propose a learning algorithm for EFM, which
learns the NLEM from the homogeneous nodes which
are in the same cluster as a given node.

For fairly evaluating the predictions made by differ-
ent methods, we propose Virtual Accuracy, which not
only measures the absolute accuracy, but also takes the
difficulty of a prediction into consideration.

We conduct the experiments on the datasets from
three different applications, and compare EFM with
three baseline methods: Mean Value Method, Basic
Matrix Factorization and Biased Matrix Factorization.
The results show EFM outperforms all the baseline
methods in overall.

Acknowledgments

This work is supported by the National Science Foun-
dation of China under Grant Nos. 61173099, 61103043
and the Doctoral Fund of Ministry of Education of Chi-
na under Grant No. 20110181120062. This work is also
supported in part by NSF through grants CNS-1115234,
DBI-0960443, and OISE-1129076, and US Department
of Army through grant W911NF-12-1-0066.

References

[1] Netflix prize. URL http://www.netflixprize.com.
[2] J. Bao, Y. Zheng, and M. F. Mokbel. Location-based

and preference-aware recommendation using sparse
geo-social networking data. GIS 2012, 2012.

[3] G. Gorrell and B. Webb. Generalized hebbian algo-
rithm for incremental latent semantic analysis. In Pro-
ceedings of Interspeech, 2006.

[4] M. A. Hasan, V. Chaoji, S. Salem, and M. Zaki. Link
prediction using supervised learning. SDM’ 06 work-
shop on Link Analysis, Counterterrorism and Security,
2006.

[5] IMDb. URL http://www.imdb.com/.
[6] V. Leroy, B. B. Cambazoglu, and F. Bonchi. Cold start

link prediction. KDD’ 10, 2010.
[7] R. N. Lichtenwalter, J. T. Lussier, and N. V. Chawla.

New perspectives and methods in link prediction. KD-
D’ 10, 2010.

[8] G. Linden, B. Smith, and J. York. Amazon.com
recommendations: Item-to-item collaborative filtering.
2003.

[9] A. Paterek. Improving regularized singular value de-
composition for collaborative filtering. In Proceedings
of KDD cup and workshop, volume 2007, pages 5–8,
2007.

[10] B. Sarwar, G. Karypis, J. Konstan, and J. Riedl.
Item-based collaborative filteringrecommendation al-
gorithms. 2001.

[11] E. Savia, K. Puolamäki, and S. Kaski. Latent grouping
models for user preference prediction. Machine Learn-
ing, 74(1):75–109, 2009.

[12] Y. Sun, J. Han, C. C. Aggarwal, and N. V. Chawla.
When will it happen? - relationship prediction in het-
erogeneous information networks. WSDM’ 12, pages
663–672, 2012.

[13] Y. Sun, J. Tang, J. Han, C. Chen, and M. Gupta.
Co-evolution of multi-typed objects in dynamic star
networks. IEEE TKDE, 2013.

[14] B. Taskar, M. fai Wong, P. Abbeel, and D. Koller. Link
prediction in relational data. NIP’ 03, 2003.

[15] D. Team. Dblp. URL http://dblp.uni-trier.de/.
[16] C. Wang, V. Satuluri, and S. Parthasarathy. Local

probabilistic models for link prediction. ICDM’ 07,
pages 322–331, 2007.

[17] B. Webb. Netflix update: Try this at home. URL
http://sifter.org/simon/journal/20061211.html.

[18] K. Yehuda, B. Robert, and V. Chris. Matrix factoriza-
tion techniques for recommender systems. Computer,
42(8):30–37, 2009.

[19] K. Yu, A. Schwaighofer, V. Tresp, X. Xu, and H. P.
Kriegel. Probabilistic memorybased collaborative fil-
tering. IEEE TKDE, 16(1):56–69, 2004.

791 Copyright © SIAM.
Unauthorized reproduction of this article is prohibited.

