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Abstract In Dynamic Heterogeneous Information Networks (DHINs), predicting neigh-
bor label distribution is important for a variety of applications. For example, when a user
changes job, the composition of the user’s friends can change, hence the profession dis-
tribution of his/her social circle may change. If we can accurately predict the change of
the distribution, we will be able to improve the quality of personal services for him/her.
The challenges of predicting neighbor label distribution mainly come from four aspects:
infinite state space of neighbor label distributions, link sparsity, the complexity of link for-
mation preferences, and the stream of DHIN snapshots. To address these challenges, we
propose a Latent Space Evolution Model (LSEM) for the prediction of neighbor label distri-
bution, which builds a Neighbor Label Distribution Matrix (NLDM) for each type of labels
of neighbors of given nodes. LSEM can predict the next NLDM by reconstructing it from
two latent feature matrices estimated by their respective autoregressive models. The experi-
ments conducted on real datasets verify the effectiveness of LSEM and the efficiency of the
proposed algorithm.
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1 Introduction

In recent years, prediction in dynamic heterogeneous information networks (DHINs) has
become a hot topic owing to the development of social networks (e.g., Facebook, Twitter
and Foursquare). Existing works mainly focus on predicting the rating [7, 26, 29, 32] or
the formation [9, 18, 19, 38, 41] of a single link. Some other works focus on predicting the
labels of a single node [1, 3, 8, 15, 48]. In this paper, we aim to address the problem of the
prediction of the neighbor label distributions of given nodes in a DHIN.

In a DHIN, a node might have neighbors with different types in different periods. For
example, Figure 1 shows a stream of co-author network snapshots, where the nodes and
labels are represented by circles and rectangles, respectively. As we can see from Figure 1,
there are two types of nodes, Author nodes and Paper nodes, and each type of nodes may
have multiple types of labels. For example, in Figure 1, an Author node has a Profession
label (e.g., the label ”Student” of Author 1), while a Paper node has a domain label (e.g.,
the label ”Database” of Paper 1) and a publishing category label (e.g., the label ”Journal”
of Paper 1). For a given node, we can build a distribution for each type of the labels of
its neighbor nodes, which we call neighbor label distribution. For example, there are three
types of neighbor label distributions of Author 1 in Figure 1, where each type of neighbor
label distribution is represented by a 100 % stacked as shown in Figure 2. As we can see
from Figure 2, the neighbor label distributions are time-evolving.

Predicting neighbor label distributions is valuable for a variety of applications. For exam-
ple, it is important for a scholar to keep up with the academic frontier by predicting the
distributions of the research interests of leading scholars and following them. For more
examples, a location-based social network may want to predict regions a user will go to
tomorrow so as to recommend venues for the user. A movie rating network may want to
predict the spending power distribution of the potential consumers on a new TV play for
making a proper price of the play. A social media network may want to predict the inter-
ested topic distribution of each user so as to design his/her personalized start page for each
log-in.
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Figure 1 A stream of co-author network snapshots
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Figure 2 Neighbor label distributions

However, predicting neighbor label distributions is not easy due to the following
challenges.

• Infinite state space of neighbor label distributions: The number of possible states of
a neighbor label distribution is infinite, because fractions in a neighbor label distribu-
tion are real numbers. Temporal models such as Markov chain-based models and time
varying relational classifier [8, 33] cannot serve our goal because they often assume a
finite state space.

• Sparsity of links: In real-world networks, the number of links between a given node
and its neighbors is relatively small compared with the huge volume of nodes, e.g.,
”publishing” in DBLP and ”checking in” in Foursquare. The sparsity of links makes it
difficult to mine sufficient meaningful patterns for individuals.

• The complexity of link formation preference: A neighbor label distribution essen-
tially reflects the link formation preference of a given node to the nodes with a specific
type, and the evolution of the distribution results from the preference shifting. For
example, in a co-author network, the paper domain distribution of an author changes
with his/her research interests. Some previous researches [5, 17] indicate that the link
formation preference might be very complicated as it can be affected by multiple fac-
tors, e.g., social circle, profession, age, and so on. Therefore, it is difficult to accurately
model the link formation preference of a node by using specific features.

• Stream of DHIN snapshots: As we can see from Figure 1, neighbor label distribu-
tions of a given node evolve over a stream of DHIN snapshots. Sometimes we may
want to get real-time response to each snapshot. For example, the recommender of a
video website might want to predict the genre distribution of users’ playlists so as to
arrange personalized start pages for them in real time. Many traditional methods are not
applicable to make a prediction by only using the latest information.

To address these challenges, we propose a Latent Space Evolution Model (LSEM) for
the prediction of neighbor label distribution, based on which the time cost of the predictions
is linear with the number of nodes and independent of the number of DHIN snapshots. The
main idea of LSEM is to model neighbor label distributions of given nodes as a Neighbor
Label Distribution Matrix (NLDM) and make prediction of next NLDM by autoregressions
of latent features. We call the given nodes source nodes and the labels target labels. Figure 3
gives an overview of LSEM. In the first part, to deal with the link sparsity and the complexity
of link formation preference, LSEM factorizes each historical NLDM into a Source Node
latent feature Matrix (SNM) and a Target Label latent feature Matrix (TLM). A row vector
of SNM implicitly represents the link formation preference of a source node, while a row



1272 World Wide Web (2017) 20:1269–1291

TLM

Part 1: Autoregressions of Latent Feature Matrices Part 2: Prediction

Historical DHIN Snapshots

NLDM …

…

…

SNM

Training 
Autoregressive models

AR(p)AR(p)

AR(p)AR(p)…

………

p

SNM TLM Historical NLDMs

Predicted NLDM

Figure 3 Overview of LSEM

vector of TLM represents the latent feature of a target label. By the factorization, we can
model the link formation preference as a dense latent feature vector, even if the links around
a node in a DHIN snapshot are sparse. To deal with the stream of DHIN snapshots, we fit the
historical TLMs and SNMs by two p-order autoregressive models. As shown in the second
part in Figure 3, LSEM makes a prediction of the next NLDM by reconstructing it from the
next SNM and TLM which are estimated from the latest p historical SNMs and TLMs by
the autoregressive models, respectively.

Our previous work [23] presents the problem of prediction of neighbor label distribution
in an HIN, and proposes an Evolution Factor Model (EFM) for it. There are two major
differences between LSEM and EFM. First, LSEM is an incremental model which makes
a prediction based on the latest p snapshots, while EFM is a batch model which makes a
prediction based on the whole history of an HIN. Second, LSEM takes into consideration
the evolution of link formation preference of source nodes, as it is designed for a stream
of DHIN snapshots, while EFM does not as it is for an HIN of which the history is treated
holistically.

Our contributions can be summarized as follows:

1. We propose a Latent Space Evolution Model (LSEM) for the prediction of neighbor
label distribution in DHINs. The time complexity of prediction algorithm based on
LSEM is linear with the number of source nodes and independent of the number of
DHIN snapshots.

2. We propose two p-order autoregressive models for the estimation of the next SNM and
TLM, from which the NLDM can be reconstructed.

3. We compare LSEM with six baseline methods on four real datasets. The results verify
the effectiveness and efficiency of the proposed model and algorithm.

The rest of this paper is organized as follows. We give the preliminaries in Section 2.
We describe NLDM and formalize the problem of neighbor label distribution prediction in
Section 3. We present the details of LSEM in Section 4. We present the experimental results
and analysis in Section 5. Finally, we discuss related works in Section 6, and conclude in
Section 7.
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2 Preliminaries

In this paper, a vector is denoted by a boldface lowercase letter (e.g., v), where the ith cell
is denoted by x(i). A matrix is denoted by a boldface capital letter (e.g., X), where the cell
at ith row and j th column of X is denoted by x(i,j).

We denote a heterogeneous information network by G =< V, E >, where V is the node
set and E is the link set. A Dynamic Heterogeneous Information Network (DHIN) can be
segmented into a stream of DHIN snapshots denoted by G =< G1, G2, ..., Gt , ... >, where
Gt represents the snapshot of G at time t [37]. For example, in the co-author network case,
each Gt is a network comprised of all papers published in year t , as well as the authors
linking to them. The neighbor label distribution is formally defined as follow:

Definition 1 (Neighbor Label Distribution): For a given node v of type V1, its neighbor
label distribution over labels of type L of neighbor nodes of type V2 is a vector

(x(1), ..., x(j), ..., x(M)),

where M is the number of difference labels of label type L, and an entry x(j), 1 ≤ j ≤ M ,
is the occurrence fraction of label j of type L, and

∑M
j=1 x(j) = 1. The given node v is

called source node, and the labels of type L are called target labels.

3 Neighbor label distribution matrix

For a given node, it has a neighbor label distribution uniquely corresponding to each possible
combination of a neighbor node type and a neighbor label type. This corresponding relation
can be modeled by a 2-hop meta-path [36] from a node type to a label type, which we call
preference meta-path. The definition of the preference meta-path is given in Definition 2.

Definition 2 (Preference Meta-Path): A preference meta-path, denoted by R, is a 2-hop
relation from a node type to a label type,

R = V1 → V2 → L, (1)

where V1 is a source node type, V2 is a neighbor node type, and L is a label type.

A preference meta-path uniquely defines a type of neighbor label distributions. For
example, in Figure 4, the paper domain distribution of authors can be defined by the
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Figure 4 A snapshot of a co-author network
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preference meta-path, R = Author → Paper → Domain, and an instance of it is
A1 → P2 → Machine Learning.

Based on the concept of preference meta-path, we propose Neighbor Label Distribu-
tion Matrix (NLDM) to model the neighbor label distributions of source nodes. The formal
definition of NLDM is given as follow:

Definition 3 (Neighbor Label Distribution Matrix (NLDM)): The NLDM of a prefer-
ence meta-path R = V1 → V2 → L at time t , denoted by Xt (R), is a matrix of RN×M ,
where N is the number of source nodes of type V1 and M is the number of different labels
of type L. The ith row vector in Xt (R), denoted by X

(i)
t (R), represents a neighbor label

distribution, i.e.,

X
(i)
t (R) = (x(i,1), ..., x(i,j), ..., x(i,M)),

where x(i,j), 1 ≤ j ≤ M , is the j th entry in X
(i)
t (R). x(j) can be calculated as x(j) =

PCi,j (R)
∑M

l=1 PCi,l (R)
, where PCi,j (R) is the number of instances defined by the preference meta-

pathR from the node i of type V1 to the label j of label type L.

Hereinafter, for simplicity, we denote an NLDM by Xt and the ith row vector in Xt by
X

(i)
t in an unambiguous context.
As an illustration, Figure 5 shows two neighbor label distributions of node A1 in the co-

author network shown in Figure 4. Figure 5a shows the neighbor label distribution of A1
defined by the preference meta-pathR1 = Author → Author → Prof ession. Figure 5b
shows the other neighbor label distribution of A1 defined by the preference meta-pathR2 =
Author → Paper → Domain.

Now the problem of the prediction of neighbor label distributions can be reduced to the
following prediction problem.

Problem statement Given a preference meta-path R and the latest p NLDMs
{Xt−p+1(R), ..., Xt (R)} until current time t , we want to predict the NLDM at time t + 1,
Xt+1(R).

Figure 5 Examples of neighbor label distribution vectors
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4 Latent space evolution model

In this section, we present the details of Latent Space Evolution Model (LSEM), which
consists of two parts, autoregressions of latent feature matrices and reconstruction of NLDM
for prediction.

4.1 Autoregressions of latent feature matrices

For the prediction of Neighbor Label DistributionMatrix (NLDM), a straight forward idea is
regression, however, which can not be directly applied due to the two challenges mentioned
above, sparsity of links and the complexity of link formation preference. To overcome these
issues, we first factorize each historical NLDM to latent feature matrices, and then utilizes
two p-order autoregressive models to estimate the future latent matrices from which the
future NLDM can be reconstructed.

We can factorize an NLDMX to a Source Node latent feature Matrix (SNM) and a Target
Label latent feature Matrix (TLM) by solving the following optimization problem:

argmin
S,T

1

2
‖X − S × T T‖2F + λ

2

(
‖S‖2F + ‖T ‖2F

)
, (2)

where ‖ ∗ ‖F denotes the Frobenius norm, S ∈ R
N×D is the SNM, T ∈ R

M×D is the TLM,
N is the number of source nodes, M is the number of difference target labels, D is the
dimensionality of latent features, λ is the balance parameter, and ‖S‖2F and ‖T ‖2F are the
regularization terms which avoid overfitting and guarantee the row vectors in S and T are
dense.

A row vector of SNM implicitly represents the link formation preference of a source
node, and a row vector of TLM represents the latent feature of a target label. Note that even
if the links of a node in a DHIN snapshot are sparse, the latent features of the source node
and the target label can still make sense because the SNM and TLM would be dense due
to the regularization terms. Similarly, we can generate the historical SNMs and TLMs as
follows:

X1 = S1 × T T
1 ,

...

Xt−1 = St−1 × T T
t−1,

Xt = St × T T
t .

We estimate the SNM Ŝt+1 and the TLM T̂ t+1 from the latest p historical SNMs and
TLMs respectivley by using the following p-order autoregressive models:

Ŝt+1 =
p∑

j=1

φ
(j)

S St−j+1 + CS, (3)

T̂ t+1 =
p∑

j=1

φ
(j)
T T t−j+1 + CT, (4)

where p is the order of the two autoregressive models, CS and CT are constant matri-

ces in which all the entries are filled with φ
(0)
S and φ

(0)
T , respectively, and

{
φ

(0)
S , ..., φ

(p)

S

}
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and
{
φ

(0)
T , ..., φ

(p)
T

}
are parameters of the two autoregressive models. We learn the two

autoregressive models by solving the following optimization problems:

argmin
φ

(0)
S ,...,φ

(p)

S

1

2

t∑

t ′=p+1

‖St ′ − Ŝt ′ ‖2F, (5)

argmin
φ

(0)
T ,...,φ

(p)
T

1

2

t∑

t ′=p+1

‖T t ′ − T̂ t ′ ‖2F, (6)

where Ŝt ′ = ∑p

j=1 φjSt ′−j + CS and T̂ t ′ = ∑p

j=1 φjT t ′−j + CT are the estimated SNM
and TLM at time t ′, respectively. The order of the autoregressive models can be determined
by minimizing the following residual [4]:

e =
t∑

t ′=p+1

(‖St ′ − Ŝt ′ ‖F + ‖T t ′ − T̂ t ′ ‖F), (7)

where Ŝt ′ = ∑p

j=1 φjSt ′−j + CS and T̂ t ′ = ∑p

j=1 φjT t ′−j + CT are the estimated SNM
and TLM at time t ′, respectively.

Note that in (5) – (7), p decides how many historical snapshots will impact the current
SNM and TLM. When the setting value of p is too large, the earlier historical snapshots
become disturbance items, which will result in the increasing of the residual e. On the con-
trary, when the setting value of p is too small, the model will be underfitting, which will also
increase the residual e. Therefore, the optimal p depends on datasets and is experimentally
determined by minimizing the residual e defined by (7). In our paper, we determine p based
on experimental result as shown in Figure 11. For the datasets used for our experiments, p
is chosen as 2 for DBLP, Foursquare and Yelp, and 3 for Netflix.

Algorithm 1 gives the learning algorithm of autoregressive models.
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4.2 Prediction

After the parameters, p, �S and �T, are learnt, we can predict Xt+1 from the given p latest
NLDMs, {Xt−p+1, ... , Xt−1, Xt }. We first generate the SNMs {St−p+1, ..., St−1,St } and
TLMs {T t−p+1, ..., T t−1,T t } from the latest p historical NLDMs. Then, we estimate Ŝt+1
and T̂ t+1 by using the two learnt autoregressive models defined by (3) and (4). Finally, we
can make a prediction of NLDM X̂t+1 as

X̂t+1 = Ŝt+1 × T̂
T
t+1, (8)

where Ŝt+1 and T̂ t+1 are the estimated SNM and TLM.
Algorithm 2 gives the neighbor label distribution prediction algorithm. The time com-

plexity of matrix factorization (Line (2)) is O(DET ), where E is the number of entries in
Xt , D is the dimensionality of latent features and T is the fixed maximum iteration times.
Because D, T and p are constants, the time complexity of Line (1) to Line (3) is O(E).
The time complexity of autoregressive model (Line (4) and Line (5)) is O(E). Thus, the
overall time complexity of Algorithm 2 is O(E), which indicates the time complexity of
Algorithm 2 is linear with the number of source nodes and independent of the number of
DHIN snapshots.

5 Experiments

In this section, we present the details of the experiments conducted on real datasets. We
first determine the dimensionality D of latent feature and the order p of the autoregressive
models, then verify the effectiveness and efficiency of LSEM. The experiments are executed
on a Windows 7 PC with an Intel Xeon CPU of 3.4GHz and 16 GB RAM, and all programs
are implemented in C#. The source code is available on [21].

5.1 Datasets

We conduct our experiments on four real datasets, two location-based social networks
(Foursquare and Yelp), a co-author network (DBLP), and a movie rating network (Netflix),
which are summarized in Table 1.
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Table 1 Summary of datasets

Dataset Preference meta-path #Snapshot #Latent feature

V1 V2 L

DBLP #Author #Paper #Domain 14 11

13,153 1,202,530 25

Foursquare #User #Venue #Region 24 22

5,317 46,065 8

Netflix #User #Movie #Genre 24 6

21,439 17,770 28

Yelp #User #Business #Category 28 9

11,214 57,476 14

5.1.1 DBLP

DBLP dataset is collected and maintained by the DBLP team [39]. The dataset indexes more
than 2,800,000 articles.

On DBLP, given a preference meta-path R = Author → Paper → Domain and a
group of authors, we want to predict the paper domain distributions of the authors. There
are 25 domain labels on Computer Science. To obtain the domain labels of these papers, we
first divide the titles of papers into keywords by using ”NLTK” [27], which is a toolkit for
building Python programs to work with human language data. Then we build a dictionary
[22] which maps keywords to domain labels. At last, we extract the domain labels from
keywords based on the dictionary. We select 13,153 authors who published more than 50
papers, and use their 1,202,530 papers which were published from 2000 to 2011. We use
a year as the unit of time, thus the dataset is segmented into 12 snapshots each of which
corresponds to one year of 2000 to 2011. Figure 6a shows that the number of authors follows
a heavy-tailed distribution over the number of their published papers, which indicates the
dataset is nature.

5.1.2 Foursquare

We joint two Foursquare datasets which are collected by Zhang et al. [14, 45, 46] and Bao et
al. [2], respectively. One contains 5,392 users, 48,756 tips, 38,921 venues and 76,972 social
links, and the other one contains 221,128 tips generated by 49,062 users at 46,065 venues
in New York City (NYC).

On Foursquare, given a preference meta-path R = User → V enue → Region and a
group of users, we want to predict the venue region distributions of the users’ check-ins. We
select 5,317 users who have more than 5 check-ins, and use their 59,498 check-ins in NYC
from May. 1st , 2009 to May. 1st , 2011. We use a month as the unit of time, and segment
the dataset into 24 snapshots. To obtain the region labels of venues, we divide NYC into
8 regions in terms of administrative divisions. Figure 6b shows that the number of users
follows a heavy-tailed distribution over the number of check-ins, which again indicates the
dataset is nature.
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Figure 6 Overviews of datasets

5.1.3 Netflix

Netflix dataset [25] contains more than 100,000,000 rating records from about 480,000
customers over about 17,000 movie titles. The labels of ”Movie” contain 28 genres crawled
from the website IMDb [10].

On Netflix, given a preference meta-path R = User → Movie → Genre and a group
of users, we want to predict the genre distributions of the users’ rated movies. We select
21,439 users, and use their 2,704,432 ratings on 6,583 movies from Jan. 1st , 2000 to Jan.
1st , 2002. We use a month as the unit of time, and divide the dataset into 24 snapshots.
Figure 6c shows that the number of users follows a heavy-tailed distribution over the number
of movies, which also indicates the dataset is nature.

5.1.4 Yelp

Yelp dataset [43] contains more than 27,000,000 reviews and 649,000 tips by 687,000 users
for 86,000 businesses. The labels of ”Businesses” contain over 1000 categories, and we
summarize these categories into 14 major categories.

On Yelp, given a preference meta-path R = User → Business → Category and a
group of users, we want to predict the category distributions of the users’ check-ins. We
select 11,214 users who have more than 10 tips, and use their 648,303 tips from Oct. 1st ,
2009 to Aug. 1st , 2016. We use a season as the unit of time, and segment the dataset into
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28 snapshots. Figure 6d shows that the number of users follows a heavy-tailed distribution
over the number of check-ins, which again indicates the dataset is nature.

5.2 Baseline methods

In order to demonstrate the effectiveness of our model, we compare LSEM with the
following six baseline methods:

1. Evolution Factor Model (EFM): An Evolution Factor Model (EFM) is proposed in
[23] to infer neighbor label distribution in heterogeneous information networks. EFM
considers a network itself as the historical network, and an update of the network as
the current network. For a set of given nodes, EFM first clusters the nodes by using
K-means, and then infers the neighbor label distribution for each cluster by directly
applying a regression on the neighbor label distributions. To apply EFM for the predic-
tion of NLDM, it takes the snapshot at time t as the current network, and the network
comprised of all snapshots from time 1 to time t − 1 as the historical network. Then
EFM is used to predict the NLDM at time t + 1.

2. Matrix Factorization (MF): MF is proposed by B. Webb [42] to solve the movie rec-
ommender problem in Netflix Price. MF assumes the latent features of objects are
modeled by vectors, and different types of objects have factors with the same size.
When predicting the preferences of the objects of type A to the objects of type B, the
preferences can be expressed as the product between the latent factor of the objects of
type A and the latent factor of the objects of type B. To use MF for the prediction of
neighbor label distribution, we build a historical NLDM X = Xt + ... + Xt−p+1, and
then factorize X by solving the following optimization problem:

argmin
S,T

1

2
‖X − S × T T‖2F + λ

2

(
‖S‖2F + ‖T ‖2F

)
,

where λ is the balance parameter, S and T are the latent feature matrices of source
nodes and target labels. We take the filled matrix X̂ = S ×T T as the predicted NLDM.

3. Biased Matrix Factorization (Biased MF): Biased MF is proposed by Paterek [26],
which is an extension of Matrix Factorization. Biased MF adds biased rates to the
objects of either type. To apply Biased MF to the prediction of neighbor label distribu-
tion, we build a historical NLDM X = Xt + ... + Xt−p+1, and then factorize X by
solving the following optimization problem:

argmin
S,T ,BS,BT

1

2
‖X − S × T T − BS − BT‖2F + λ

2

(
‖S‖2F + ‖T ‖2F

)
,

where λ is the balance parameter, S and T are the latent feature matrices of source
nodes and target labels, respectively, and BS and BT are the biased matrices of source
nodes and target labels, respectively. We take the filled matrix X̂ = S × T T as the
predicted NLDM.

4. Tucker Decomposition (TD): TD [40] decomposes a tensor into a product of a core
tensor and matrices along all dimensions. To apply TD to prediction of neighbor label
distribution, we construct the tensor and decompose it as shown in Fig. 7. The factor
matrices can be computed by solving the following optimization problem:

argmin
C,S,T ,K

1

2
‖A − C ×S S ×T T ×K K‖2F + λ

2

(
‖S‖2F + ‖T ‖2F + ‖K‖2F

)
,
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Figure 7 Tensor construction and decomposition for predicting neighbor label distribution

where A is the constructed tensor shown in Figure 7, C ∈ R
D1×D2×D3 is the core

tensor, S ∈ R
N×D1 , T ∈ R

M×D2 and K ∈ R
3×D3 are the latent feature matrices of

source nodes, target labels and time, respectively, λ is the balance parameter, N is the
number of source nodes, and M is the number of target labels. We take the sliced matrix
at time t + 1 along the time dimension of the filled tensor Â = C ×S S ×T T ×K K as
the predicted NLDM.

5. Context-Aware Tensor Decomposition (CATD): CATD [47] decomposes a tensor into
a product of a core tensor and factor matrices combining additional matrices built as
context constraints. To apply CATD to the prediction of neighbor label distribution, we
construct the same tensor as shown in the left part of Figure 7, and make a prediction
of NLDM by solving the following optimization problem:

argmin
C,S,T ,K

1

2
‖A − C ×S S ×T T ×K K‖2F + λ1

2

∑

i

∑

j

(
‖Si∗ − Sj∗‖2FS(ij)

s

)

+λ2

2

(
‖S‖2F + ‖T ‖2F + ‖K‖2F

)
,

where Si∗ is the latent feature vector of source node i, Ss is the relationship indicating
matrix in which an entry S

(i,j)
s is 1 if there is a link between i and j , and 0, otherwise.

We take the sliced matrix at time t + 1 along the time dimension of the filled tensor
Â = C ×S S ×T T ×K K as the predicted NLDM.

6. Meta Path-based Regression (MPR): MPR [34, 35] uses a generalized linear model
to build the connection between the observed building time of links and the meta path-
based features. To applyMPR to the prediction of neighbor label distribution, we extract
features based on two meta paths, ”Author / User - Paper / Venue / Movie / Business
- Domain / Region / Genre / Category” and ”Author / User - Author / User - Paper /
Venue / Movie / Business - Domain / Region / Genre / Category”, and make a prediction
of NLDM as follow:

x̂
(i,j)

t+1 = exp{−vβ},

where x̂
(i,j)

t+1 is an entry of the predicted NLDM X̂t+1 denoting author/user i and label
j , v is the meta path-based feature vector extracted from the historical snapshots, and
β is the coefficient vector.
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5.3 Metrics

The performance is measured by two metrics, Root Mean Square Error (RMSE) and Mean
Absolute Error (MAE), defined as follows:

RMSE =
√

‖Xt+1 − X̂t+1‖2F
2N

,

MAE =
∑N

i=1 ‖X(i)
t+1 − X̂

(i)

t+1‖1
2N

,

where X̂t+1 is the predicted NLDM, Xt+1 is the ground truth, X
(i)
t+1 and X̂

(i)

t+1 are the ith
row vectors in Xt+1 and X̂t+1, respectively, ‖·‖1 denotes the L1-norm, andN is the number
of source nodes.

5.4 Sensitivity of parameters

We now investigate the sensitivity of the parameters of LSEM, i.e., the dimensionality D of
latent feature, the balance parameter λ, and the order p of the autoregressive models.

5.4.1 The dimensionality of latent features

For each of the four datasets, we tune the dimensionality of latent features, denoted by D,
according to the residual of the matrix factorization on the first snapshot. The residual is
calculated as

e = ‖X1 − S1 × T T
1‖F,

where S1 and T 1 are generated by solving the following optimization problem:

argminS1,T 1

1

2
‖X1 − S1 × T T

1‖2F + λ

2

(
‖S1‖2F + ‖T 1‖2F

)
.

We tune D from 2 to 50, and as shown in Figure 8, the residuals on DBLP, Foursquare,
Neflix and Yelp reach the minimum at 11, 22, 6 and 9, respectively. So we choose D = 11,
D = 22, D = 6 and D = 9 as the dimensionality of latent features for the four datasets,
respectively.

5.4.2 The balance parameter λ

For each of the four datasets, we determine the balance parameter λ, according to the per-
formance of LSEM when setting different values of λ. We tune λ from 0.0 to 1.0 with
step-size 0.05, and use the first 6 snapshots as the training set, and predict Xt+1, t = 6 on
DBLP. On Foursquare and Netflix, we use the first 18 snapshots as the training set, and pre-
dict Xt+1, t = 18. On Yelp, we use the first 22 snapshots as the training set, and predict
Xt+1, t = 22. As shown in Figure 9, the RMSE and MAE of LSEM on DBLP, Foursquare,
Neflix and Yelp reach the minimum at 0.15, 0.65, 0.2 and 0.6, respectively. So we choose
λ = 0.15, λ = 0.65, λ = 0.2 and λ = 0.6 for the four datasets, respectively.
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Figure 8 Tuning the dimensionality of latent features

5.4.3 The order p of autoregressive models

We first verify the stationarity of the sequences of latent features before applying autoregres-
sive model for the estimation of the latent feature matrices, SNM and TLM. We randomly
select 300 source nodes from each dataset and compute the autocorrelation of the sequence
of each latent feature of each user in the first 12 snapshots of each dataset. For a sequence
{s1, s2, ..., st }, its autocorrelation rq is calculated as:

rq =
∑t

i=q+1(si − s)(si−q − s)
∑t

i=1(si − s)2
,

where q is the delay time, and s is the average of the sequence. Then, for each of the latent
feature matrices, SNM and TLM, we plot the average autocorrelation curves of each latent
feature of each user in the same graph. As we can see from Figure 10, the autocorrelations
all decline with q and drop to near zero, which shows that the sequences are stationary [4].

We then determine the order p according to residual analysis on snapshots of DBLP,
Foursquare, Netflix and Yelp, respectively, where the residual is calculated as

e =
t∑

t ′=p+1

(‖St ′ − Ŝt ′ ‖F + ‖T t ′ − T̂ t ′ ‖F).

We choose the order p = 2 for DBLP, Foursquare and Yelp, and p = 3 for Netflix, because
the residuals on DBLP, Foursquare, Netflix and Yelp reach minimum at p = 2, p = 2,
p = 3 and p = 2 respectively, as shown in Figure 11.
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Figure 9 Tuning balance parameter

5.5 Effectiveness

On DBLP, we use the first 7 snapshots as the training set, and predict Xt+1, 7 � t � 11.
On Foursquare and Netflix, we use the first 19 snapshots as the training set, and predict
Xt+1, 19 � t � 23. On Yelp, we use the first 23 snapshots as the training set, and predict
Xt+1, 23 � t � 27. The results on the four datasets are shown in Figures 12, 13, 14 and 15
respectively.

Figure 10 Average autocorrelation curves of DBLP, Foursquare, Netflix and Yelp
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Figure 11 Residual of each p on DBLP, Foursquare, Netflix and Yelp

As we can see from the above figures, LSEM outperforms the baseline methods on all
the datasets, of which the reasons can be analyzed as follows:

1. In contrast with LSEM, EFM makes predictions directly by a regression of NLDMs,
which ignores link formation preference of source nodes.

2. MPR, MF, Biased MF, TD, and CATD can make predictions based on models incor-
porating the link formation preference, but they can not capture the evolution of link
formation preference of source nodes.

Figure 12 Performance comparison on DBLP
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Figure 13 Performance comparison on Foursquare

5.6 Efficiency

As mentioned in Section 4.2, the time complexity of Neighbor Label Distribution Prediction
Algorithm (NLDPA, shown in Algorithm 2) is linear with the number of source nodes and
independent of the number of DHIN snapshots.

To verify the running time of NLDPA is linear with the number of source nodes, we
randomly select 1000, 2000, 3000, 4000 and 5000 source nodes (Author nodes of DBLP,
User nodes of Foursquare, Netflix, and Yelp) from each dataset, and run NLDPA for each
group of source nodes. Figure 16 shows the running time of NLDPA is linear with the
number of the source nodes on all the four datasets.

To verify the running time of NLDPA is independent of the number of DHIN snapshots,
we use the first 7 snapshots as the training set for all the datasets. And we predict Xt+1,
taking 7 � t � 11 on DBLP, 7 � t � 23 on Foursquare and Netflix, and 7 � t � 27 on
Yelp. As shown in Figure 17, the running time of prediction algorithm remains stable with
the increasing number of DHIN snapshots on all the four datasets.

Figure 14 Performance comparison on Netflix
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Figure 15 Performance comparison on Yelp

6 Related work

In this section, we first clarify the difference between this work and our previous work on the
prediction of neighbor label distribution, then briefly introduce the related works from four
domains, link prediction, recommending algorithms, user profiling, and node classification.

Figure 16 Running time of LSEM of different source nodes
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Figure 17 Running time of LSEM

Link prediction Hasan et al. [9] introduce a supervised learning method to predict
whether a link will be built in the future. Wang et al. [41] propose a local probabilistic
graphical model method that can scale to large graphs to estimate the joint co-occurrence
probability of two nodes. Taskar et al. [38] propose a method to address the problem of
link prediction in heterogeneous networks based on the observations of the attributes of the
objects. There are a number of other studies which make use of the information about the
change in the network over time for link prediction. For example, Zhu et al. [12] propose
a Markov model-based method to predict links for helping user to surf the Internet, where
the website page are clustered according to their hyperlinks. And the Markov model-based
method is applied on the hierarchy constructed from the clustering results. Acar et al. [6]
propose a time-aware link prediction method which constructs a three dimension tensor.
The tensor structure includes the time information as the third dimension instead of col-
lapsing the data, which overcomes the difficulty of representing temporal data. Sun et al.
[35] extend the traditional link prediction to relationship prediction, which not only predicts
whether it will happen, but also infers when it will happen. These methods mainly focus on
the predictions around a single link, but pay little attention to the prediction of distributions.

Recommending algorithms Recommending algorithms can be classified as two cate-
gories: memory-based algorithms and model-based algorithms. The former type of methods
make predictions based on homogeneous neighbors of given individuals directly [20, 28,
44], and the latter type of methods make recommendations based on a learned predic-
tion model [29]. However, existing recommending algorithms mainly focus on predicting
the rating of a single link between a user and an item, while in this paper, we aim at
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the prediction of neighbor label distribution where the states of neighbors are considered
holistically.

User profiling User profiling is an important task for many online services. Some early
works focus on gender discrimination [16] and author identification [24]. Costa Jr et al.
[13] propose an approach to predict demographic attributes and personalities based on the
answers of users to some specific psychometric tests. Kosinski et al. [15] use dimensionality
reduction for preprocessing the Likes data, which are then entered into logistic/linear regres-
sion to predict individual psychodemographic profiles. Brdar et al. [3] propose a multi-level
classification model to predict users’ genders, ages, marital statuses, job types, and so on.
Lately, Zhong et al. [48] extract rich semantics of users’ check-ins and propose the loca-
tion to profile (L2P) framework to infer demographics of users. Our work is different from
the user profile mining, becaues we focus on the dynamic characteristics of nodes which
evolves over time.

Node classification Most node classification methods classify nodes in dynamic net-
works. For example, Sharan and Neville propose a relational Bayes classifier [30] and a
probability tree [31] to classify nodes in an evolving heterogenous network with different
types of nodes, where time information is included to improve the classifier. Callut et al.
[11] propose a novel technique, called D-walks, to tackle semi-supervised classification
problems in dynamic network, which can deal with directed or undirected graphs with a lin-
ear time complexity with respect to the number of edges. Recently, a time varying relational
classifier [8] is proposed to classify nodes in a heterogeneous network by effectively using
nodes connected to the node and the connections from the past. However, these methods
cannot serve our goal because they often assume a finite state space.

7 Conclusions

In this paper, we aim at addressing the problem of neighbor label distribution prediction
in dynamic heterogeneous information networks. We propose a Latent Space Evolution
Model (LSEM), which uses a Neighbor Label Distribution Matrix (NLDM) to represent
the state of neighbors of given nodes. LSEM factorizes historical NLDM into Target Label
latent feature Matrix (TLM) and Source Node latent feature Matrix (SNM) and predicts
the next NLDM by reconstructing it from the next SNM and TLM which are estimated by
the proposed autoregressive models. We conduct the experiments on four real datasets, two
location-based social networks (Foursquare and Yelp), a co-author network (DBLP), and
a movie rating network (Netflix). The results verify the effectiveness and efficiency of the
proposed model and algorithm.
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