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Abstract In real world, a heterogeneous information network (HIN) is often dynamic
due to the time varying features of the nodes, and uncertain due to missing values
and noise. In this paper, we investigate the problem of reducing the uncertainty of a
dynamic HIN, which is an important task for HIN analysis. The challenges are three-
fold, the heterogeneity of features, the heterogeneity of constraints, and the dynamic
uncertainty. We propose a novel approach, called fusing reconstruction (FRec), which
reconstructs the uncertain snapshots of a dynamic HIN in a homogeneous feature
space combining two fusions, the fusion of heterogeneous features and the fusion of
heterogeneous constraints. To address the challenge of the heterogeneity of features,
we propose an invertible fusing transformation (IFT) as the first part of FRec. IFT is a
bidirectional transformation, which is able to learn unified latent homogeneous feature
representations for heterogeneous nodes and transform them back to the raw heteroge-
neous feature space by its invertibility. To address the challenge of the heterogeneity
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of constraints and the challenge of dynamic uncertainty, we propose a heterogeneous
constraints fusion based tensor reconstruction model (HCF-TRM) as the second part
of FRec. HCF-TRM is able to denoise the uncertain snapshots of a dynamic HIN
and recovers the missing values by fusing the spatial smoothness constraint and the
temporal smoothness constraint into the tensor reconstruction. At last, the extensive
experiments conducted on real datasets and synthetic datasets verify the effectiveness
and scalability of FRec.

Keywords Heterogeneous information network · Invertible fusing transformation ·
Graph embedding · Sparse tensor approximate

1 Introduction

Heterogeneous information networks (HINs) are networks consisting of intercon-
nected objects of different types, and serve as a new network model for many offline
and online applications including environment monitoring networks, e-commerce net-
works, social networks (e.g. LBSN), research publication networks (e.g. DBLP), etc.
Generally, an HIN always evolves over time as nodes are associated with one or
more features (measurements) of which the values vary over time. For example, in
an environment monitoring network, the nodes representing observation stations in
an environment monitoring network might record temperature, humidity, traffic, and
some other measurements, and the values of these measurements always change over
time. InDBLP, a node representing a conferencemay have a property of how active dif-
ferent topics are every year, and a node representing a topic term may have a property
of how attractive that topic is to researchers every year, and both of the two properties
are time-varying. The records of the feature values of all nodes at a specific time form
a snapshot of a dynamic HIN, and all the snapshots arranged in chronological order
form the history of the dynamic HIN. In a big data era, applications often need to
leverage the rich knowledge hidden in histories of dynamic HINs to improve their
service quality.

The historical snapshots of dynamic HINs, however, are always uncertain due to
missing values and noise. Figure 1 shows three snapshots of a environment monitoring
network consisting of two types ofmonitoring stations over a town roadnetwork,where
the green circle nodes represent the stations collecting meteorologic data (MD) such
as humidity and pressure, the red triangle nodes represent the stations collecting air
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Fig. 1 Illustration of dynamic heterogeneous information networks
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quality index (AQI), and the vertical line segments represent the values of MF and
AQI, respectively. We can have two observations from Fig. 1: (1) The height of a
vertical line segment changes over three snapshots, which means the measurements
at MF nodes and AQI nodes are time-varying. (2) The nodes with missing value exist
and change over time. For example, at time t1, the node with missing value is node b,
while at time t2, the node with missing value becomes node c, and at time t3, node e.
To get an insight of how our living environment changes over time, scientists need to
recover the missing values of the historical snapshots.

In this paper, we investigate the problem of reducing the uncertainty of the history
of a dynamic HIN, which is not easy due to the following challenges.

– Heterogeneity of features In HINs, interconnected nodes of different types likely
have heterogeneous features with different metric units and value ranges. For
example, in Fig. 1, AQI is often measured by the density of aerosol particles
smaller than 2.5µm, which may take any real number greater than zero, while on
an MF node, the humidity is often defined as the total mass of water vapor present
in a given volume of air. It might lead to a large error to reconstruct missing values
on a node simply by linearly combining the feature values on its heterogeneous
neighbor nodes.

– Heterogeneity of constraints A node usually generates its measurement under two
different constraints. On one hand, since HINs always evolve over time, a node
measurement depends on its own historical sequence, which we call temporal
constraint. On the other hand, a node is in a network context, so a node mea-
surement also depends on its connectivity to other nodes, which we call spatial
constraint. It is a challenge to combine these two heterogeneous constraints in a
unified framework.

– Dynamic uncertainty As we can see from Fig. 1, in different snapshots, the nodes
with missing value are different, which means the uncertainty of dynamic HINs is
also dynamic. The dynamic uncertainty makes traditional methods such as matrix
factorization and signal recovery inapplicable to dynamic HINs, since they are
mostly motivated by static networks.

In this paper, we propose a novel approach to reducing the uncertainty of a dynamic
HIN, called Fusion based Reconstruction (FRec). The main idea of FRec to address
the aforementioned challenges is reconstructing the snapshots of a dynamic HIN in
a homogeneous feature space by two types of fusions, the fusion of heterogeneous
features and the fusion of heterogeneous constraints. The high level view of FRec is
shown in Fig. 2.

To address the challenge of the heterogeneity of features, in this paper, we propose
an invertible fusing transformation (IFT) as the first part of FRec for the fusion of
heterogeneous features, which is illustrated in the leftmost block of Fig. 2. IFT is able
to transform the HIN nodes from their different raw heterogeneous feature spaces to a
unified Latent Homogeneous Space (LaHo-Space), in which the nodes are represented
by Latent Homogeneous Features (LaHo-Features) generated by IFT. Since the raw
heterogeneous features are of different dimensions, we will learn an IFT matrix for
each type of nodes. Note that the invertibility is a key property of IFT, by which IFT
plays the role of a bridge between the raw heterogeneous feature space and the LaHo-
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Fig. 2 Flow of FRec

Space. As one can see from the rightmost block of Fig. 2, once the LaHo-Features are
reconstructed in the LaHo-Space, their corresponding raw heterogeneous features can
be recovered by applying the inverse form of IFT to the reconstructed LaHo-Features.
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To address the challenge of the heterogeneity of constraints and the challenge of
dynamic uncertainty, we propose a heterogeneous constraints fusion based tensor
reconstruction model (HCF-TRM) as the second part of FRec, to fulfil the reconstruc-
tion of the snapshots in the LaHo-Space. As shown in the middle block of Fig. 2, the
core data structure of HCF-TRM is a homogeneous snapshot tensor, which is built by
assembling the homogeneous snapshots in the LaHo-Space. To reconstruct the LaHo-
Features, HCF-TRMapproximates the homogeneous snapshot tensor by decomposing
it into a tensor product of a low-rank core identity tensor and three factormatrices, with
respect to a fusion of the two heterogeneous constraints. To meet the temporal con-
straint, HCF-TRM temporally smooths the reconstructed LaHo-Features, i.e., makes
them similar between successive time points, while to meet the spatial constraint,
HCF-TRM spatially smooths the reconstructed LaHo-Features, i.e., makes them simi-
lar with neighbors in the LaHo-Space. Themajor benefit of HCF-TRM is the reduction
of the uncertainty, as it can infer the missing values by approximating the uncertain
snapshot tensor, and denoise the features by smoothing them both temporally and
spatially.

The major contributions of this paper can be summarized as follows:

(1) FRecWepropose anovel approach, called fusing reconstruction (FRec), for reduc-
ing the uncertainty of dynamic HINs. FRec is able to reconstruct the historical
snapshots of dynamic HINs by two fusions, heterogeneous features fusion and
heterogeneous constraints fusion. To the best of our knowledge, FRec is the first
work on uncertain dynamic HINs.

(2) IFT We propose an IFT as a bridge between the raw heterogeneous feature
space and the LaHo-Space. IFT can transform the HIN nodes from their different
raw heterogeneous feature spaces to a unified LaHo-Space, and its inverse form
can recover the heterogeneous features from the reconstructed LaHo-Features in
LaHo-Space. To our best knowledge, IFT is the first invertible transformation
method for latent feature learning for HIN.

(3) HCF-TRM We propose a heterogeneous constraints fusion based tensor recon-
struction model (HCF-TRM), which fulfills the LaHo-Feature reconstruction.
HCF-TRM reduces the uncertainty by approximating and denoising the uncer-
tain snapshot tensor.

(4) We conduct extensive experiments on real datasets and synthetic datasets to verify
the performance of our approach.

The rest of this paper is organized as follows. The notations, preliminary concepts
and the target problem are defined in Sect. 2. The details of IFT are described in Sect. 3.
The details of HCF-TRM are described in Sect. 4. The overall algorithm of FRec is
presented in Sect. 5. We analyze the experimental results in Sect. 6. At last, we briefly
review the related work in Sect. 7 and conclude in Sect. 8.

2 Preliminaries

In this section, we first introduce the mathematical symbols, then define the basic
concepts, and finally give the formal statement of the target problem.
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2.1 Notations

In this paper, we use bold lower case letters such as x, y to represent column vectors,
and the i th component of x is represented by xi . We use bold upper case letters
such as A, B to represent matrices, and the i th row of A is represented by Ai : and
the j th column A: j . Sets are represented by regular upper case letters such as V, E ,
particularly, empty set is represented by Φ. The cardinality of V is denoted by |V |.
Tensors are represented by calligraphic letters such as T ,Q.

2.2 Basic definitions

A HIN (Chang et al. 2015; Sun et al. 2012) is defined as follow:

Definition 1 (Heterogeneous information network (HIN)) An HIN is an undirected
graphG = (V,W), where V = {v1, . . . , vN } is a set of N nodes, andW is a weighted
adjacent matrix of N × N , where element W i j > 0 if and only if there exists a link
between nodes vi and v j , otherwise W i j = 0. There exists a type mapping function
f : V �→ O , where O = {o1, . . . , oM } is a set of M node types.

Note that in this paper we assume that the weighted adjacent matrixW is known as
input. Essentially, an entry W i j measures the similarity between nodes vi and v j , so
W can be generated based on the priori knowledge about the similarity between nodes,
which depends on the concrete application scenarios one is handling. As examples, in
Sect. 6, wewill describe how to decide theW for the datasets used for the experiments.

Obviously, the whole node set V can be divided into M disjoint subsets V (m),m =
{1, . . . , M}, respectively corresponding to M different types, i.e., V (m)

⋂
V (l) = Φ

for ∀m �= l and V = ⋃M
m=1 V

(m). Any node can uniquely fall into only one subset,
and a node vi , i = {1, . . . , N } belongs to a subset V (m), if and only if f (vi ) = om .
Any node vi ∈ V (m) is associated with a raw feature vector x(m)

i of dm dimensions.
In a heterogeneous context, for any two nodes vi ∈ V (m), u j ∈ V (l),m �= l, and

i, j = {1, . . . , N }, their raw feature vectors x(m)
i and x(l)

j often have different dimen-

sionalities, i.e., dm �= dl . For each node subset V (m),m = {1, . . . , M}, we can build
a raw feature matrix X (m) ∈ R

dm×|V (m)| where the column vectors of X(m) consist of
the raw feature vectors x(m)

i of the nodes vi ∈ V (m) as shown in the leftmost block of
Fig. 2. Now we can define the snapshot of an HIN as follow:

Definition 2 (HIN snapshot) Given an HIN G = (V, E), its snapshot at time point
q is defined as the set Sq = {X(1)

q , . . . , X (M)
q }, where X(m)

q ,m = {1, . . . , M}, is the
state of X (m) at time point q.

2.3 Problem statement

As we have mentioned before, the snapshots of an HIN is often uncertain due to the
missing values, and noise. The target problem of this paper can be formally stated as
follow:
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Given an HIN G = (V,W), and its uncertain historical snapshot sequence
〈S1, . . . , SQ〉, we want to reconstruct these snapshots in which the true values of
the raw features are approximated in an acceptable accuracy.

3 Invertible fusing transformation (IFT)

In this section, we describe the details of the IFT, which is an invertible mapping
function able to transform HIN nodes from their corresponding raw heterogeneous
feature spaces to a unified LaHo-Space.

3.1 Definition of IFT

As we have mentioned, an IFT should be orthogonal for its invertibility. Based on this
ideas, we formally define IFT as follow:

Definition 3 (IFT ) The IFT for node subset V (m),m = {1, . . . , M}, is a transforma-
tion

Z(m) = Q(m)X(m), (1)

where X(m) ∈ R
dm×|V (m)| and Z(m) ∈ R

R×|V (m)| are the raw feature matrix and the
LaHo-Feature matrix of V (m), respectively, and Q(m) ∈ R

R×dm is the transformation
matrix for V (m). Q(m) satisfies the orthogonal constraint that the column vectors of

Q(m) are orthogonal with each other, i.e., Q(m)T Q(m) = I , where I is a dm × dm
identity matrix.

It is easy to show that the orthogonality of the row vectors of Q(m) leads to the
invertibility of IFT, which indicates that the raw feature matrix can be recovered by
the equation

X(m) = Q(m)T Z(m), (2)

once the LaHo-Feature matrix Z(m) is constructed.

3.2 Optimizing objective

We learn an IFT Q(m) for each node subset V (m),m = {1, . . . , M}, and the M IFTs
Q(1), . . . , Q(M) can transform the nodes from their respective raw feature spaces to
a unified LaHo-Space of R dimensions.

Objective functionWe formulate IFT learning as the following minimization prob-
lem:

argmin
Q(1),...,Q(M)

F(Q(1), . . . , Q(M)) + βR(Q(1), . . . , Q(M)),

s.t. Q(m)T Q(m) = I, Q(m) ≥ 0,m = {1, . . . , M},
(3)

where F(Q(1), . . . , Q(M)) is the loss function defined in LaHo-Space, R(Q(1), . . . ,

Q(M)) is the regularization function for avoiding overfitting, and β > 0 is the bal-
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ancing parameters. Now we describe the loss function and the regularization function
respectively.

Loss function F Our idea to design the loss function is first based on the fact
that in a LaHo-Space, any two objects, even of different types, are homogeneous
and consequently we can measure the similarity between them. For any two nodes
vi ∈ V (m), u j ∈ V (l), i, j = {1, . . . , n},m, l = {1, . . . , M}, the similarity between
them in the LaHo-Space can be defined as the inner product of their corresponding
LaHo-Features, i.e,

s(z(m)
i , z(l)j ) = z(m)T

i√
wi

z(l)j√
w j

= (Q(m)x(m)
i )T Q(l)x(l)

j√
wi

√
w j

(4)

where wi = ∑N
k=1 W ik , w j = ∑N

k=1 W jk . Note that the second equality in Eq. (4)
can be derived according to Eq. (1), and when m = l, Eq. (4) returns the similarity
between two nodes of the same type.

The loss function is supposed to reflect the linkage information of an HIN. It is
reasonable to assume that the nodes that are neighbors with each other should incur
less penalty than the nodes that are not neighbors (Chang et al. 2015). Based on this
assumption, we design the following indicator function:

ci j =
{
1 if W i j > 0,
−1 if W i j = 0.

Based on this indicator function and Eq. (4), for any m, l ∈ 1, . . . , M,m �= l, the
loss incurred by IFTs Q(m) and Q(l) can be defined as:

g(Q(m), Q(l)) =
|V (m)|∑

i=1

|V (l)|∑

j=1

−ci j s(z
(m)
i , z(l)j ). (5)

Based on Eq. (5), we finally define the overall loss function as follow:

F(Q(1), . . . , Q(M)) =
M−1∑

m=1

M∑

l=m+1

g(Q(m), Q(l))

+
M∑

m=1

g(Q(m), Q(m)).

(6)

Note that in Eq. (6), the first term represents the loss incurred by IFTs of different
types (m �= l), while the second term represents the loss incurred by IFT of the same
type.

Regularization function R The regularisation function R(Q(1), . . . , Q(M)) is
defined as:

R
(
Q(1), . . . , Q(M)

)
=

M∑

m=1

‖ Q(m) ‖2F . (7)
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where ‖ · ‖F represents the Frobenius norm of a matrix.

3.3 IFT learning

There are no closed-form solution to the optimization problem of Eq. (3) due to the
orthogonality constraints (Wen and Yin 2013). In this subsection, we will develop
an iteratively learning algorithm for IFT with the preservation of the orthogonal
constraint. Our basic idea is to alternately learn Q(1), . . . , Q(M) by employing a
variant of the classical gradient descent method (Wen and Yin 2013). We first fix
Q(2), . . . , Q(M), and learn Q(1), and then fix Q(1), Q(3), . . . , Q(M), and learn Q(2),
and so on. Without loss of generality, we first describe the learning algorithm for a
particular IFT Q(m), k = {1, . . . ,m}, then give the learning algorithm for all IFTs.

3.3.1 Learning a particular IFT Q(m)

Now we describe how to learn a single IFT Q(m) when Q(1), . . . , Q(m−1), . . . ,

Q(m+1), . . . , Q(M) are fixed. For simplicity, we omit the superscript of Q(m) and
just denote it by Q, then the minimization problem represented by Eq. (3) becomes
the following optimization problem:

argmin
Q

F(Q) + βR(Q),

s.t. QT Q = I,
(8)

where β is a weight parameter used to control the contribution ofR(Q).
The Lagrangian function of Eq. (8) is

L(Q,Λ) = H(Q) − 1

2
tr(Λ(QT Q − I)),

where H(Q) = F(Q) + βR(Q), and Λ is the Lagrangian multiplier matrix. Note
that since the matrix QT Q is symmetrical, Λ is also a symmetrical matrix. Now, the
solution of Eq. (8) is equivalent to the solution minimizing L(Q,Λ). Note that when
Q is a local optimizer of Eq. (8), ∂L

∂ Q = B − QΛ = 0, where

B = ∂H
∂ Q

= ∇QF(Q) + β∇QR(Q)

=
⎛

⎝
∑

l �=m

∇Qg
(
Q, Q(l)

)
+ ∇Qg(Q, Q)

⎞

⎠ + 2β Q,
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where

∇Qg(Q, Q(l)) =
|V (m)|∑

i=1

|V (l)|∑

j=1

ci j
Q(l)x(l)

j xTi√
wi

√
w j

,

∇Qg(Q, Q) =
|V (m)|∑

i=1

|V (m)|∑

j=1

ci j
Q(xi xTj + x j xTi )

√
wi

√
w j

.

Considering QT Q = I , we have Λ = BT Q, then the gradient of L with respect to
Q is

∇QL = B − QBT Q = AQ, (9)

where
A = BQT − QBT . (10)

Naturally, according to Eq. (9) the naive iterative update schema for Q is

Qi = Qi−1 − τ∇Qi−1
L = Qi−1 − τ AQi−1, (11)

where Qi is the updated Q at i th iteration, and τ is a step size. However, this update
schema can not serve our goal because it can not guarantee that the orthogonality
constraint (QT

i Qi = I) is always satisfied at every iteration (Wen and Yin 2013).

ALGORITHM1:LearningQ(X (m), {Q(1), · · · , Q(m−1), Q(m+1), · · · , Q(M)}, τ, ε)
Input:

X(m): the raw feature matrix of node subset of type m;
{Q(1), · · · , Q(m−1), Q(m+1), · · · , Q(M)}: the fixed transformation matrices as constants;
τ : the step size;
η, ε: the thresholds for convergence;

Output:
Q(m): the IFT matrix for X(m);

1: Initialize Q(m)
0 s.t. Q(m)

0
T
Q(m)
0 = I ;

2: i ← 0;
3: repeat
4: i ← i + 1
5: Build A according to Equation (10);
6: Build P according to Equation (14);

7: Q(m)
i ← P Q(m)

i−1, according to Equation (13);
8: until ‖∇Qi

H(Qi )‖ < ε

9: Q(m) ← Q(m)
i

In order to preserve the orthogonality constraint at each iteration, inspired by the
idea presented in Wen and Yin (2013), we use a novel iterative update equation by
modifying the gradient term of Eq. (11) as follow:

Qi = Qi−1 − τ A(Qi−1 + Qi ). (12)
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After a simple linear algebra derivation, we can get the solution to Eq. (12):

Qi = P Qi−1, (13)

where
P = (I + τ A)−1(I − τ A). (14)

The following theorem ensures that Qi is orthogonal if Qi−1 is orthogonal.

Theorem 1 If QT
i−1Qi−1 = I , then QT

i Qi = I .

Proof As A is an anti-symmetric matrix, for any nonzero vector a, aT (I + τ A)a =
‖ a ‖22 holds true (Golub and Van Loan 2013), i.e., (I + τ A) is positive definite.
Therefore (I + τ A) is invertible, and PT P = (I + τ A)(I + τ A)−1(I − τ A)−1(I −
τ A) = I . Then QT

i Qi = QT
i−1P

T P Qi−1 = QT
i−1Qi−1 = I .

According to Theorem 1, if we initialize Q0 to be orthogonal, the orthogonality
constraint will be preserved at each iteration. Algorithm 1 outlines the procedure of
learning a particular IFT. In the i th outer iteration (lines 3–8), Algorithm 1 updates
Q(m)

i with respect to Eq. (13) until the gradient ∇Qi
H(Qi ) converges to a value less

than the given threshold ε.

3.3.2 Learning all IFTs

The learning procedure for all the IFTs of all node types is shown as Algorithm 2.

ALGORITHM 2: LearningIFT(X (1), · · · , X (M), τ, ε)

Input:
X(1), · · · , X(M): the raw feature matrices;
τ : the step size;
η, ε: the thresholds for convergence;

Output:
Q(1), · · · , Q(M): the IFT matrices;

1: repeat
2: for all m ∈ {1, · · · , M} do
3: Q(m) ← LearningQ(X(m), {Q(1), · · · , Q(m−1), Q(m+1), · · · , Q(M)}, τ, ε);
4: end for
5: until ‖∇Q(m)H(Q(m))‖ < ε for all m ∈ {1, · · · , M}

As we have mentioned, Algorithm 2 learns IFT matrices of all node subsets one by
one (lines 2–4) by repeatedly invoking Algorithm 1 (line 3), and repeats this procedure
until every learned IFT matrix converges (lines 2–6). Note that the learning order of
Q(m) does not affect the convergency of Algorithm 2, because once a Q(m) meets the
stop learning condition ‖∇Q(m)H(Q(m))‖ < ε (line 5), it will be fixed and will not be
updated anymore. We will verify the convergency of Algorithm 2 in Sect. 6.

123



890 N. Yang et al.

Fig. 3 HCF-TRM

4 Heterogeneous constraints fusion based tensor reconstruction model
(HCF-TRM)

In this section, we describe the details of our heterogeneous constraints fusion based
tensor reconstruction model (HCF-TRM).

4.1 Homogeneous snapshot tensor

By IFTs, the raw featurematrices of each type of heterogeneous nodes are transformed
to LaHo-Feature matrices Z(m), m ∈ {1, . . . , M}, and each HIN snapshot Sq , q ∈
{1. . . . , Q}, has a corresponding homogenous snapshot S̃q = {Z(1)

q , . . . , Z(M)
q } in the

LaHo-Space. Since the column vectors of each Z(m)
q , m ∈ {1, . . . , M}, are of R-

dimensional, we can build a bigger matrix Zq of R × N by horizontally assembling

Z(m)
q , i.e., Zq = Z(1)

q . . . Z(M)
q .

Along the time dimension, we further assemble Z1, . . . , ZQ to a homogenous
snapshot tensor. As shown in Fig. 3, the homogeneous snapshot tensor T ∈ R

R×N×Q

consists of three modes which respectively represent R LaHo-Features, N nodes, and
Q time points. We call Zq , q ∈ {1, . . . , Q}, a temporal slice of T at time point q.

4.2 Tensor reconstruction model

In LaHo-Space, the homogeneous snapshot tensorT still stay uncertain since IFT does
not eliminate the uncertainty. As illustrated in Fig. 3, we construct T̂ as an estimate
of T by a CATD decomposition (Kolda and Bader 2009),

T ≈ ̂T = I ×1 F ×2 V ×3 U, (15)

i.e., a core identity tensor I ∈ R
L×L×L multiplied by three latent factor matrices,

F ∈ R
R×L , V ∈ R

N×L , U ∈ R
Q×L , along its three modes respectively, where L is

the target rank, and the symbol ×i (1 ≤ i ≤ 3) stands for the tensor multiplication
along the i th mode. One can note that the decomposition expressed by Eq. (15) is
meaningful. Actually, F, V , and U can be regarded as the latent feature factors about
LaHo-Space, nodes, and time, respectively.
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To construct T̂ as an estimate of uncertain T , we need additional knowledge about
the tensor. In this paper, we fuse the following three additional constraints into the
reconstruction:

(1) Spatial smoothness Spatial smoothness requires the LaHo-Feature variation with
respect to the network structure of nodes be as small as possible, or equivalently
the LaHo-Features of one node is supposed to be as close as possible to a linear
combination of the LaHo-Feature vectors of its neighbors. As we can see from
Fig. 3, we impose this constraint on HCF-TRM through the node latent factor
matrix V . Based on this idea, we define the spatial variation function as follow:

φ(V ) = ‖V T − V TW‖2F , (16)

where W is the weighted adjacent matrix of the HIN, and ‖ · ‖F is the Frobenius
norm. The j th column vector of V T , V T: j , can be regarded as the latent feature

factor of the j th node, and the j th column vector of V TW , (V TW): j , is a com-
bination of the latent features factor of the neighbors of the j th node. In fact,
(V TW): j = ∑N

i=1 W i j (V T ):i , and note that W i j = 0 if i = j .
(2) Temporal smoothness Temporal smoothness requires the LaHo-Feature variation

with respect to time be as small as possible. Similar as what we do for spatial
smoothness, we impose the temporal smoothness constraint through the temporal
latent factor matrix U . We define the temporal variation function as follow:

ψ(U) = ‖UT − UT H‖2F , (17)

where H of Q×Q is a weighted temporal linkmatrix. An element H i j represents
the link weight between i th time point and j th time point, which is defined as

H i j = e−α|i− j |, (18)

where α ≥ 1 is a decay factor. The intuition of the definition of H i j is that closer
two time points are, more dependence between them, and greater weight between
them.

(3) Small noise We assume the noise is small, which means that the reconstructed
LaHo-Features of the observable nodes (i.e. the nodes whose value are not miss-
ing) are supposed to be as similar as possible to their LaHo-Features before
reconstruction. We express the noise as

δ(T̂ ) = ‖T̂ Ω − T Ω‖22, (19)

where Ω represents the set of the indices of the observable tensor cells.
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ALGORITHM 3: IDA(T ,W , H, ε)

Input:
T : the homogeneous snapshot tensor;
W : the weighted adjacent matrix of HIN;
H : the weighted temporal link matrix;
ε: the error threshold;

Output:
F, V ,U : the factor matrices;

1: Initialize F, V ,U with small random values;
2: t ← 0; Initialize Γ0;
3: Set η as step size;
4: repeat
5: t ← t + 1;
6: for all T rnq �= 0 do
7: Fr : = Fr : − η∂Fr :Γ ;
8: Vn: = Vn: − η∂Vn:Γ ;
9: Uq: = Uq: − η∂Uq:Γ ;
10: end for
11: Compute Γt ;
12: until |Γt − Γt−1| < ε

Based on these assumptions, we can define the optimization objective of HCF-TRM
as to minimize the following loss function:

Γ (F, V ,U) = β1

2
δ(T̂ ) + β2

2
φ(V ) + β3

2
ψ(U)

+ β4

2
(‖F‖22 + ‖V‖22 + ‖U‖22)

(20)

where ‖F‖22, ‖V‖22, and ‖U‖22 are the regularization terms, and β1, β2, β3, β4 are the
nonnegative parameters used to control the respective contributions of the terms, and∑4

i=1 βi = 2. Then HCF-TRM is reduced to the following optimization problem:

argmin
F,V ,P

Γ (F, V ,U). (21)

4.3 Iterative decomposition algorithm

As it is hard to derive the closed-form solution to Eq. (21), we present an Iterative
Decomposition Algorithm (IDA) shown in Algorithm 3, which searches a suboptimal
solution with the strategy of gradient descent.

At first, note that a cell of the homogeneous snapshot tensor,T rnq , can be computed
by

T rnq = I ×1 Fr : ×2 V n: ×3 Uq:,

where r ∈ {1, . . . , R}, n ∈ {1, . . . , N }, and q ∈ {1, . . . , Q}.
Next, note that at each iteration step, the update of the tensor is actually reduced

to the update of each cell. For a cell T rnq �= 0, the gradient of the objective function
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Γ (F, V ,U) can be computed by the following equations:

∂Fr :Γ = β1(T̂ rnq − T rnq) × I ×2 V n: ×3 Uq: + β4FT
r :,

∂V n:Γ = β1(T̂ rnq − T rnq) × I ×1 Fr : ×3 Uq:
+ β2(V T (I − W) × (I − W)):n + β4V T

n:,
∂Uq:Γ = β1(T̂ rnq − T rnq) × I ×1 Fr : ×2 V n:

+ β3(UT (I − H) × (I − H)):q + β4UT
q:.

(22)

ALGORITHM 4: PDA(T ,W , H, ε)

Input:
T : the homogeneous snapshot tensor;
W : the weighted adjacent matrix of HIN;
H : the weighted temporal link matrix;
ε: the error threshold;

Output:
F, V ,U : the factor matrices;

1: Partition T into a grid of sub-tensors, {T (k)};
2: Concurrently call I DA(T (k),W (k), H(k), ε) for each sub-tensor T (k), where W (k), H(k) are

respectively the parts of W , H corresponding to T (k);
3: Concurrently build V ,U, B by iteratively concatenating the factors of the sub-tensors,

V (k),U(k), B(k), in terms of Lemma 1;

4.4 Parallel decomposition algorithm

A huge and sparse tensor T will incur a very high computational cost when we update
the loss function [Eq. (20)]. To overcome this issue, we further design a Parallel
Decomposition Algorithm (PDA) shown in Algorithm 4, which takes a divide-and-
conquer strategy to fulfill the tensor decomposition. PDA first partitions the tensor
T into a grid of sub-tensors, T = {T (k)|k ∈ K}, where K is a collection of sub-
tensor indexes, K = {[k1, k2, k3]|1 ≤ k1 ≤ K1, 1 ≤ k2 ≤ K2, 1 ≤ k3 ≤ K3}, and
Ki (1 ≤ i ≤ 3) is the number of sub-tensors along i th mode. Then PDA concurrently
factorizes the sub-tensors by invoking Algorithm 3, and at last, PDA integrates the
partial results to produce the final factor matrices for the whole tensor. The following
lemma ensures that a large-scale tensor decomposition can be obtained by integrating
the factors of its sub-tensors (Phan and Cichocki 2011).

Lemma 1 If a tensor T can be partitioned into two sub-tensors T (1) and T (2), and
they are factorized as T (1) = I(1) ×1 F(1) ×2 V (1) ×3 U (1) and T (2) = I(2) ×1
F(2) ×2 V (2) ×3 U (2) respectively, then the tensor T can be factorized as T =
I ×1 F ×2 V ×3 U , where I =

[
I(1)

I(2)

]

, F = [
F(1) F(2)

]
, V = [

V (1) V (2)
]
,

and U =
[
U (1)

U (2)

]

.
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ALGORITHM 5: FRec(V,W , 〈S1, · · · , SQ〉, {Q(1), · · · , Q(M)}, ε)
Input:

V : the HIN node set;
W : the weighted adjacent matrix of HIN;
〈S1, · · · , SQ 〉: the sequence of uncertain snapshots of HIN;
{Q(1), · · · , Q(m)}: the IFT matrices;
ε: the error threshold;

Output:
〈Ŝ1, · · · , ŜQ 〉: the reconstructed snapshots;

1: for all Sq , q ∈ {1, · · · , Q} do
2: for all X(m)

q ,m ∈ {1, · · · , M} do
3: Z(m)

q = Q(m)X(m)
q , according to Equation (1);

4: end for
5: Build the homogeneous time slice Zq = Z(1)

q · · · Z(M)
q ;

6: end for
7: Build the homogeneous snapshot tensor T by assembling Zq , q ∈ {1, · · · , Q};
8: Build the weighted temporal link matrix H according to Equation (18);
9: Set the error threshold ε;
10: Generate the factor matrices F, V , and U by calling PDA(T ,W , H, ε) (Algorithm 4);
11: Build the estimate tensor ̂T = I ×1 F ×2 V ×3 U ;
12: for all q ∈ {1, · · · , Q} do
13: for all m ∈ {1, · · · , M} do
14: Reconstruct the raw feature matrix for nodes of type m: X̂(m)

q = Q(m)T Ẑ(m)
q , according to

Equation (23);
15: end for
16: Reconstruct the snapshot at time point q: Ŝq = {X̂(1)

q , · · · , X̂(M)
q };

17: end for

5 Fusing reconstruction (FRec)

As illustrated in Fig. 2, once we generate the estimate tensor T̂ , we can apply
the inverse form of IFTs to reconstruct the raw heterogeneous feature matrices,
X̂1, . . . , X̂Q , from the temporal slices, Ẑ1 = T̂ ::1, . . . , ẐQ = T̂ ::Q (see the right-
most part of Fig. 2). Actually, according to Eq. (2) introduced in Sect. 3.1, for
∀q ∈ {1, . . . , Q}, and ∀m ∈ {1, . . . , M},

X̂
(m)
q = Q(m)T Ẑ

(m)
q , (23)

where X̂
(m)
q is the raw feature matrix of the nodes of type m at time point q, and Ẑ

(m)
q

is its LaHo-Feature sub-matrix extracted from the temporal slice Ẑq .
Algorithm 5 outlines the procedures of FRec, which consists of three successive

parts. The first part (lines 1–6) applies IFT of each node type to transform the raw
heterogeneous features to LaHo-Features, which corresponds to the leftmost block of
Fig. 2. The second part (lines 7–11) reconstructs the homogeneous snapshot tensor
by applying HCF-TRM, which corresponds to the middle block of Fig. 2. At last, the
third part (lines 12–17) reconstructs the snapshots by applying the inverse form of
IFT to transform the LaHo-Features back to the raw heterogeneous features, which
corresponds to the rightmost block of Fig. 2.
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6 Experiments

In this section, we first investigate the sensitivity of LaHo-Space dimensionality R, and
the target rank L ofHCF-TRM, and then verify the effectiveness and efficiency of FRec
(IFT+HCF-TRM). The experiments are conducted on a hadoop cluster consisting of
two PCs, each of which is equipped with a 2.7 GHz INTEL CPU and 32GB RAM.
All the programs are written with MATLAB.

6.1 Experiment setting

6.1.1 Datasets

We use three real datasets of different types and five synthetic datasets for our experi-
ments. On each dataset, we use 80% of the data as the training set, and the remaining
part as the test set.

Environment monitoring network (EMN): EMN is a dataset contains one-year (from
Feb. 8, 2013 to Feb. 8, 2014) AQI data consisting of themeasurements of PM2.5, PM10,
SO2, and NO2, and meteorological data (MD) consisting of the measurements of tem-
perature, humidity, and barometer pressure, collected by 22 environment monitoring
stations in Beijing and 11 ones in Shanghai (Zheng et al. 2013). To build an EMN for
each city, we randomly choose some stations as theAQI nodes, and some other stations
as the MD nodes, and weight a link between any two nodes (monitoring stations) of
different types or the same type according to the distance betweenmonitoring stations.
Since the data were recorded every one hour, we build a snapshot of EMN for each
hour.

DBLP: Based on the DBLP data from 2000 to 2012, we build a dynamic HIN
consisting of two types of nodes, the 40 conference nodes and the 25 term nodes.
The feature of a conference node is a term distribution vector where each component
represents the number of accepted papers that relate to a specific term. The feature of
a term node is a conference distribution of papers relating to that term. The weight
schema of links is defined as follows: (1) a link between a conference node and a term
node is weighted in terms of the proportion of the papers related to that term in the
total papers published in that conference; (2) a link between two conference nodes is
weighted in terms of the number of the papers that are accepted by the conferences
and share at least one term; (3) a link between two term nodes is weighted in terms of
the number of papers that share those two terms. We build 13 snapshots for the DBLP
network, one for each year.

Foursquare: Bao et al. (2012) released a location based social network (LBSN)
dataset collected from Foursquare, which contains a collection of the check-in records
that were generated at four USA cities in the years from 2008 to 2012. Based on this
dataset, we build a dynamic heterogeneous network consisting of 5918 venues nodes
and 1116 user nodes. We define the feature of a venue node as a 8-dimensional vector
as representing the distribution of the check-ins at that venue over 8 time intervals of
a day. The feature of a user node is defined as a 10-dimensional vector representing
a frequency distribution of the check-ins of that user over 10 venue categories. The
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Table 1 Synthetic datasets Name N D Q

SYN1 2K 10 10

SYN2 4K 10 10

SYN3 8K 10 10

SYN4 16K 10 10

SYN5 32K 10 10

weight of a link between two venue nodes is defined in terms of the distance between
them, the weight of a link between two user nodes is defined in terms of the number of
their co-occurrences, and the weight of a link between a venue node and a user node
is defined in terms of the times that user checked in at that venue. Similarly, we build
5 snapshots for the Foursquare network, one for each year.

Synthetic datasets: We use synthetic dataset to verify the efficiency of FRec. A
synthetic dynamic network with a given number of nodes N is generated through 4
steps. First, we choose the raw feature space dimensionality D, and randomly gen-
erating a D-dimensional nonnegative feature vector for each node. Second, we build
the weighted adjacent matrix in terms the cosine similarity between two nodes. Third,
we choose the number Q of time points, and building Q snapshots, where each node
feature linearly decays along the Q time points. At each snapshot, we also add a white
noise of mean 0 and variance 1 to each node feature. We generate 5 synthetic datasets
in total, as described in Table 1.

6.1.2 Metrics

To evaluate the effectiveness of FRec, we use the following two metrics: root mean
square error (RMSE) and mean absolute error (MAE), which are defined as

RMSE =

√
√
√
√
√

1

QND

M∑

m=1

Q∑

q=1

N∑

n=1

dm∑

r=1

((
X (m)
q

)

rn
−

(
X̂

(m)
q

)

rn

)2
,

MAE = 1

QND

M∑

m=1

Q∑

q=1

N∑

n=1

dm∑

r=1

|
(
X(m)
q

)

rn
−

(
X̂

(m)
q

)

rn
|,

where D = ∑M
m=1 dm .

6.1.3 Baseline methods

Weuse the l1-normLow-RankMatrixApproximation (LRMA) (Achlioptas andMcsh-
erry 2007) and the CATD tensor decomposition model (Wang et al. 2014; Zheng et al.
2014) as the alternatives of our HCF-TRM, which are both classical methods for miss-
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Fig. 4 Sensitivity of R and L . a RMSE on EMN. bMAE on EMN. c RMSE on DBLP. dMAE on DBLP.
e RMSE on foursquare. dMAE on foursquare

ing value recovery. We will compare our FRec (IFT+HCF-TRM) with the different
combinations of the alternatives, i.e., IFT+LRMA, IFT+CATD, LRMA, and CATD.

6.2 Sensitivity of R and L

In our experiments, we set the LaHo-Space dimensionality R = 11 and the HCF-TRM
target rank L = 10 for the dataset EMN, R = 8 and L = 11 for the dataset DBLP,
and R = 15 and L = 10 for the dataset Foursquare. To see why they are good choices
of R and L , we investigate their sensitivity to the performance of FRec by running
FRec with different combinations of the values of R and L on the three real datasets.
Figure 4a, b show the results on EMN, and Fig. 4c, d the results on DBLP.

Theoretically, given a specific value of R, FRec will perform best when L equals
the rank of the tensor. However, there is no straightforward algorithm to determine
the rank of a given tensor (Kolda and Bader 2009). We search a suboptimal value of
L in a space defined by an upper bound of the rank of a tensor, which is stated in the
following Lemma 2 (Kruskal 1989).

Lemma 2 For a general third-dimensional tensor T ∈ R
I×J×K , its rank L ≤

min{I J, I K , J K }.
From Fig. 4 we see that fixing R at a value, all the metrics roughly decrease as L

increases. This is consistent with the nature of tensor decomposition which is analo-
gous to a Taylor expansion where a function can be approximated better with more
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Table 2 Effectiveness on EMN Method RMSE MAE

FRec (IFT+HCF-TRM) 1.2449 0.5191

IFT+CATD 1.5370 1.0110

IFT+LRMA 1.9921 1.0816

CATD 3.1708 1.1220

LRMA 3.8253 1.3394

derivative terms of higher order, and a low-rank approximation of a matrix where the
matrix can be approximated more precisely by more leading factors of its SVD. In our
HCF-TRM the homogeneous snapshot tensor will be reconstructed more precisely
with a decomposition of higher target rank. However, a decomposition with too high
a target rank will incur an overfitting, and that is why we see the RMSE and MAE
become larger when L > 10 on EMN, L > 11 on DBLP, and L > 10 on Foursquare.

From Fig. 4 we also see that fixing L at a value, eachmetric roughly exhibits a curve
that first falls and then rises after R > 11 on EMN, R > 8 on DBLP, and R > 15 on
Foursquare. Intuitively, more latent features will make IFTmore informative and raise
the precision of the reconstruction from the LaHo-Space to the original raw feature
space. However, again, IFT with too many latent features will incur an overfitting.

At last, from Fig. 4 we find that the points (11, 10), (8, 11) and (15, 10) on the R−L
plane are the local optimal points for EMN, DBLP, and Foursquare, respectively.

6.3 Effectiveness of FRec

Now we compare FRec with the baseline methods IFT+LRMA, IFT+CATD,
LRMA, and CATD, to verify the effectiveness of FRec. On each dataset, we use 80%
of the data as the training set and the remaining part as the test set. On the test set, we
randomly remove 30% of cells and use their original values as the ground truth. Note
that to verify IFT, we also compare FRec with applying LRMA and CATD alone to
reconstruct the missing values in the raw feature space without feature transformation.
To directly apply LRMA and CATD to the raw feature space where heterogeneous
nodes have different dimensionality of features, we extend the raw feature vectors of
nodes of each type to the same dimensionality which is sum of the dimensionalities
of heterogeneous node features.

The results on EMN and DBLP are shown in Tables 2 and 3, respectively, which
show that FRec outperforms all the baseline methods on all datasets. We can make
some reasonable analyses as follows (Table 4).

At first, one can see that on all datasets, the RMSEs and MAEs of IFT+CATD
and IFT+LRMA are much lower than those of applying CATD and LRMA alone to
reconstruct the dynamic HINs directly in the raw feature space. This result verifies
the proposed idea of reconstructing an uncertain dynamic HIN from a transformed
homogeneous feature space (i.e., LaHo-Space) generated by IFT. In contrast with
reconstructionwithout feature transformation, the advantage of IFT lies on its ability to
overcome the challenge of feature heterogeneity by fusing the heterogeneous features
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Table 3 Effectiveness on
DBLP

Method RMSE MAE

FRec (IFT+HCF-TRM) 3.3519 1.1749

IFT+CATD 3.8100 1.2201

IFT+LRMA 3.8612 1.2307

CATD 4.3519 1.3050

LRMA 4.9073 1.4001

Table 4 Effectiveness on
foursquare

Method RMSE MAE

FRec (IFT+HCF-TRM) 2.2960 1.6226

IFT+CATD 4.0098 2.5982

IFT+LRMA 4.5331 3.0373

CATD 7.7675 5.0356

LRMA 8.0618 5.5237

into a homogeneous space in which missing features of a node can be recovered from
the heterogeneous neighbors of that node.

Next, one cannote that on all datasets, the theRMSEandMAEofFRec (IFT+HCF-
TRM) are lower than those of IFT+CATD and IFT+LRMA, which verifies the
effectiveness of our HCF-TRM. Unlike CATD and LRMA, HCF-TRM is able to
overcome the challenge of constraint heterogeneity by fusing the temporal constraint
and spatial constraint into the tensor decompositionmodel. LRMAtreats each snapshot
separately and neglects both the temporal smoothness and spatial smoothness of the
features of HIN nodes. Although CATD takes the time dimension into account and
assembles the snapshots to a unified tensor, it neither smoothes the factor matrix U
along temporal dimension, nor smoothes the factor matrix V along spatial dimension,
while HCF-TRM does both (see Fig. 3).

6.4 Efficiency of FRec

We investigate the efficiency of FRec by comparing it with its native version called
Native-FRec which fulfils the HCF-TRM by directly invoking IDA (Algorithm 3)
instead of PDA (Algorithm 4). The efficiency of FRec mainly depends on the tensor
size R × N × Q (where R is the dimensionality of LaHo-Feature space, N is the
number of nodes, and Q is the number of snapshots), the number M of different node
types, and the number of parallel threads. We thus first compare the running time
of FRec with that of Native-FRec over the 6 synthetic datasets which have different
tensor sizes, and then over different M . At last, we check the speedup ratio of FRec
and Native-FRec versus the number of parallel threads.
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Fig. 5 Running time over different tensor sizes

6.4.1 Running time versus tensor size

Figure 5 shows the result of the running time comparison between FRec and Native-
FRec over the 6 synthetic datasets where R, L and M are set to 10, 10 and 2,
respectively. We can see that the running time of FRec almost linearly grows from
1.27 to 23.78min as the tensor size increases from 2K × 10 × 10 to 32K × 10 × 10,
while the running time of Native-FRec sharply grows from 3.92 to 84.76min. A larger
tensor size will result in a bigger time cost of the tensor decomposition in HCF-TRM.
At the same time, we also note that the running time of Native-FRec is significantly
longer than that of FRec at scales equal to or larger than 2K×10×10. This efficiency
gain of FRec is mainly due to the PDA algorithm which takes a divide-and-conquer
strategy to fulfill the HCF-TRM.

6.4.2 Running time versus M

We investigate how the running time changes with different M on the synthetic dataset
SYN1, where R and L are both set to 10. To simulate M types of nodes, we randomly
divide the nodes of SYN1 intoM groupswith an equal size. Figure 6 shows the running
time of FRec and Native-FRec over a range of M from 2 to 10. We can see that as M
increases, the running time of FRec and Native-FRec both grows in a similar trend. A
larger M just will make IFT (the first part of FRec) more time consuming while with
little impact on HCF-TRM (the second part of FRec).

6.4.3 Speedup ratio versus number of parallel threads

We check the speedup ratio of FRec and Native-FRec on the largest synthetic dataset
SYN5, where R, L and M are set to 10, 10 and 2.

Figure 7 shows the speedup ratio of FRec and Native-FRec with respect to the
number of threads.We can see that the speeds of FRec andNative-FRec both accelerate
as more threads are generated for optimization. However, the speedup ratio of FRec is
a lot larger than that of Native-FRec at each number of threads. As shown in Fig. 7, the
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Fig. 7 Speedup ratio comparison

speedup ratio of FRec grows almost linearly from 5% to 26% as the number of threads
increases from 2 to 20, while the speedup ratio of Native-FRec is at most about 5%.

6.5 Convergency of IFT learning

At last, we investigate the convergency of Algorithm 2 learningIFT using the largest
synthetic dataset SYN5 which has two types of nodes (i.e., M = 2). Figure 8a, b
show that how Δ(m) = ‖Q(m)

i − Q(m)
i−1‖ (m = 1, 2) changes with respect to the

iteration number i under the learning orders of (Q(1), Q(2)) and the learning order of
(Q(2), Q(1)), respectively. As we can see from Fig. 8,Δ(1) andΔ(2) gradually decline
to about zero after 30 and 50 iterations, respectively, which indicates that both Q(1)

and Q(2) eventually converge to a fixed point regardless of the learning order of them.

7 Related work

Thework of this paper is related to three domains, graph embedding, low-rank approx-
imation of tensor, and HIN analysis.
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Fig. 8 Convergency of LearningIFT. a Learning Order of (Q(1), Q(2)). b Learning Order of (Q(2), Q(1))

7.1 Graph embedding

The purpose of graph embedding is to learn a low dimensional matrix as a latent
feature representation with an optimization objective of best preserving the simi-
larity between original data points (Yan et al. 2007; Brand 2003). He et al. (2005)
propose a subspace learning algorithm called neighbourhood preserving embedding,
which aims at preserving the local neighborhood structure on the data manifold. In
contrast, Shaw and Jebara (2009) propose a structure preserving embedding algo-
rithm which can embed graphs to a low-dimensional Euclidean space and preserve
the global topological properties of an input graph. Ahmed et al. (2013) propose
a graph factorization algorithm based on stochastic gradient descent for the low-
dimensional. Perozzi et al. propose a latent representation learning algorithm called
DeepWalk which realizes a social network embedding via a truncated random walk.
Cao et al. (2015) propose a model called GraRep which can learn low dimensional
representations of nodes appearing in a graph with global structural information of
the graph preserved. Wang et al. (2016) propose a Structural Deep Network Embed-
ding (SDNE) method for capturing non-linear network structure with preserving
global and local structure. Ou et al. (2016) develop a High-Order Proximity preserved
Embedding (HOPE) algorithm, which is scalable to preserve high-order proximities
of graphs and capable of capturing asymmetric transitivity. The aforementioned meth-
ods, however, are motivated by homogeneous settings and unable to serve dynamic
HINs.

Recently, several latent representation learning methods for heterogeneous sit-
uations have been proposed. Yuan et al. (2013) present a deep learning based
framework for latent feature learning in social media networks. Tang et al. (2015)
propose an HIN embedding algorithm, called LINE, which can preserve both 1-
step and 2-step relationships between objects. Chang et al. (2015) propose an
embedding algorithm, called HNE, based on deep neural networks, which is
able to map different heterogeneous objects into a unified latent space so that
objects from different spaces can be directly compared. In contrast to the IFT
proposed in this paper, however, these methods focus only on static heteroge-
neous networks, and are not invertible, which makes them unable to serve our
goal.
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7.2 Low-rank approximation of tensor

A branch of methods for the low-rank approximation of tensor have been proposed,
which roughly fall into two classes. The methods of the first class are mainly based on
the high order singular value decomposition (HOSVD). For example, Chen and Saad
(2009) propose a low-rank orthogonal approximations of tensors with a theoretical
guarantee of the existence of an optimal approximation. Koch and Lubich (2010) pro-
pose an algorithm for low Tucker rank approximation which works in an incremental
fashion. Lubich et al. (2013) propose a dynamic low-rank approximation algorithm
for time-dependent tensors. Anandkumar et al. (2014) propose a robust tensor power
method based on the perturbation theorem for the singular vectors.The second class
methods are often based on vector outer production combined with norm constraints
for optimization. For example, Liu et al. (2013) propose an algorithm to reconstruct
a tensor with its trace norm minimized. Jia et al. (2014) propose a low-rank tensor
completionmethod for action classification, as well as image recovery. Yu et al. (2014)
propose a low-rank tensor learning algorithm which can approximate a sparse tensor
with its spectral norm minimized. Goldfarb and Qin (2014) propose a series of algo-
rithms for robust low-rank tensor recovery in a convex optimization framework. Sun
et al. (2008) propose a general framework, incremental tensor analysis (ITA), which
efficiently computes a compact summary for high-order and high-dimensional data,
and also reveals the hidden correlations. However, the above methods mainly do not
adapt to the data from multiple heterogeneous sources and do not optimize the tensor
decomposition by fusing heterogenous constraints, which makes them unable serve
our heterogeneous setting in this paper.

Wang et al. (2014) and Zheng et al. (2014) recently propose a context-aware tensor
decomposition (CATD) model, which is most related to our HCF-TRM. To achieve a
higher accuracy of filling in the missing entries, CATD utilizes additional heteroge-
neous data as context constraints to optimize the latent feature matrices of the tensor.
To adapt to uncertain dynamicHINs, ourmodel extends CATD from two aspects. First,
CATD focuses on a homogeneous tensor in essence, since the tensor cells store values
of the measurements of the same type. On the contrary, the tensor that HCF-TRM
handles is heterogeneous, since the tensor cells store values of the measurements of
various types. Second, CATD can not work without additional data available, while
HCF-TRM can still impose the heterogeneous constraints on the latent factor matrices
without the requirement for additional data.

7.3 Heterogeneous information network analysis

Heterogeneous information network analysis has become a popular topic which is
attracting increasing interest from researchers. The existing researches mainly con-
cern link prediction (Yang et al. 2012; Sun et al. 2012), clustering (Sun et al. 2009;
Zhou and Liu 2013), classification (Kong et al. 2012), relevance search (Shi et al.
2012), and similarity search (Xiong et al. 2015), etc. Yang et al. (2012) propose a
probabilistic method, called multi-relational influence propagation (MRIP), for pre-
dicting links in a sparse HIN. Sun et al. (2012) extend the link prediction problem
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to the relationship prediction problem, and propose a meta-path based approach to
time prediction for a certain relationship in a HIN. Sun et al. (2009) also propose an
algorithm called NetClus, which utilizes links across heterogeneous objects to gen-
erate high-quality net-clusters. Zhou and Liu (2013) present a social influence based
clustering algorithm called SI-CLUSTER for HINs. Kong et al. (2012) proposed a
meta path based collective classification algorithm called HCC to effectively assign
labels to a group of instances that are interconnected through different meta-paths. Shi
et al. (2012) presented a model called HeteSim for relevance search in HINs. Xiong
et al. (2015) propose a path-based similarity join (PS-join) method to return the top k
similar pairs of objects based on any user specified join path in a HIN.

The existing researches, however, often focus on static HINs without uncertainty
considered. To our best knowledge, the problem of reducing uncertainty of dynamic
HINs has not been studied yet.

8 Conclusion

In this paper, we propose a novel approach called FRec for the problem of reducing
uncertainty of dynamicHINs. To address the challenge of the heterogeneity of features,
we propose an IFT as the first part of FRec. IFT realizes a bidirectional transformation
between the unified latent feature representations and the raw features of the nodes in
a HIN. To address the challenge of the heterogeneity of constraints and the challenge
of dynamic uncertainty, we propose a heterogeneous constraints fusion based tensor
reconstruction model (HCF-TRM) as the second part of FRec. HCF-TRM denoises
the snapshots of a dynamic HIN and recovers the missing values by fusing the spatial
smoothness constraint and the temporal smoothness constraint into the tensor decom-
position. The extensive experiments conducted on real datasets and synthetic datasets
verify the effectiveness and scalability of FRec.
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