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Abstract
Recently, recommender systems have received an increasing amount of attention from
researchers due to their indispensable role in the more and more popular e-commercial
websites. Although a lot of methods have been proposed for warm-start recommendation,
cold-start recommendation still remains open as one of the major challenges of recom-
mender systems. The existing approaches often suffer from two defects. The first is the lack
of unified framework. The existing researches often deal with the cold-start recommendation
and the warm-start recommendation separately, which makes their respective methods hard
to integrate into a system and keeps the cold-start users/items away from the existing ones.
The second is the poor interpretability. The existing methods often ignore the complicated
preferential relationships between users and item features, and can not quantitatively explain
the multiple reasons that cause a user chooses an item. In this paper, we aim at the problem
of making explainable recommendations for both warm-start and cold-start users/items in a
unified framework, of which the challenges are three-fold, the lack of meaningful informa-
tion, large-scale data, and quantitative explanation. To address these challenges, we propose
a novel concept referred to as meta-feature, and a Meta-feature based Explainable Recom-
mendation Framework (MERF). Meta-features are latent features about item features, which
can reveal the preferential relationship between users and item features, not just the items.
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MERF is able to make recommendations for both cold-start and warm-start users/items in
a unified framework based on meta-feature. Especially, thanks to meta-feature, MERF can
make cold-start recommendations requiring no historical rating records but just the item
features. To make a recommendation with a quantitative explanation, we propose a Per-
sonalized Feature Preference (PFP) vector to characterize the different importance of item
features to a user. MERF makes a recommendation based on an Item Rating Matrix and an
Explanation Matrix, which can be estimated by fusing PFP and meta-features. To improve
the efficiency of MERF, we also propose a parallel learning algorithm and an incremental
updating algorithm for PFP. At last, extensive experiments conducted on real datasets verify
the effectiveness and efficiency of the proposed approach.

Keywords Meta-feature · Cold-start problem · Explainable recommendation

1 Introduction

Recently, recommender systems have received an increasing amount of attention from
researchers due to their indispensable role in the more and more popular e-commercial
websites. Although a lot of methods have been proposed for warm-start recommendation,
cold-start recommendation still remains open as one of the major challenges of recom-
mender systems [8, 29, 41, 46]. The existing approaches often suffer from two defects. The
first is the lack of unified framework. The existing researches often deal with the cold-start
recommendation and warm-start recommendation separately, which makes their respective
methods hard to integrate into a system and keeps the cold-start users/items away from the
existing ones. The second is the poor interpretability. To make an explainable recommenda-
tion requires the methods not only to predict the ratings of users to items but also to generate
an quantitative explanations for the preferences of users. The models used by the existing
methods to predict the rating that a user would give to an item often ignore the compli-
cated preferential relationships between users and item features, and can not quantitatively
explain the multiple reasons that cause a user chooses an item.

In this paper, we aim at the problem of making cold-start and warm-start recommenda-
tions in a unified framework, which are quantitatively explainable. For example, for new
items or existing items, we want to make a recommendation like ”We recommend the movie
’The Revenant’ (4) to you, as we know you care the rating and the leading performer of a
movie the most, its rating in IMDB is really high (1.5), and more importantly, its leading
performer is your favorite (2.5)”. Here the estimated rating of the user to the movie ’The
Revenant’ is 4 out of 5 stars, while the degrees to which the movie rating and leading per-
former of the movie satisfy the user preference are 1.5 and 2.5, respectively. In this paper,
we want to build the explanation vector 〈1.5, 2.5〉, which quantifies the reasons why the
rating is estimated as 4. Similarly, for new users or existing users, we want to make a rec-
ommendation like ”We recommend the movie ’The Hunger Games’ (3) to you, as its rating
in IMDB is really high (1.5), and its genre is your favorite (1.5)”. However, making quan-
titatively explainable recommendations for both cold-start users/items and warm-start ones
in a unified framework is not easy due to the following challenges.

• Lack of meaningful information: For a new user, her/his historical ratings often are
insufficient to profile her/him, while for a new item, we may even have no historical
ratings at all.

• Large-scale data: The existing methods like Collaborative Filtering [39] are often
based on factorization of a matrix consisting of all the users and items. In real-world,
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however, the numbers of users and items are usually very huge, which makes the
existing methods too time-consuming to make a recommendation timely.

• Quantitative explanation: In real-world, the reasons motivating a user to choose an
item are likely affected by multiple factors due to the complexity of the preference
of an individual [10, 26]. We need to quantify and fuse the factors for making a
recommendation with convincing explanation.

In this paper, we propose a Meta-feature based Explainable Recommendation Frame-
work (MERF) to address the problem of making explainable cold-start and warm-start
recommendations in a unified framework. The main idea of MERF is to estimate the rat-
ings of a user on new items by transferring the user’s preferences to the features shared by
the existing items with new items. Based on this idea, we propose a novel concept, referred
to as meta-feature. Roughly speaking, meta-features are features about item features. For
example, the movie ”The Phantom of the Opera” is ”Exquisite”, which is a description of
the movie’s genre feature of ”Romance”, and also a description of user character. Then we
say the preferential relationship that ”Exquisite” users often like ”Exquisite” movies is a
meta-feature of the movie genre feature ”Romance”. Meta-feature reveals the preferential
relationship between users and item features (not items), which is different from traditional
collaborative filtering based models that focus on the relationship between users and items.
The promising advantage of meta-feature is that meta-feature makes MERF be able to gen-
erate the latent features of items without collaboration with historical ratings of users (which
are unavailable for cold-start recommendations), which is in sharp contrast with the tra-
ditional methods where the item latent features depend on a collaborative factorization of
a user historical rating matrix. Due to this advantage, making cold-start recommendations
based on meta-feature requires no his/her historical rating records but just the item features.

People often pay attention of different degrees to different features of items. For example,
when choosing a movie, some users may regard as important the genre of movies, while
some other users may care more about the leading performer of movies. Inspired by this
observation, we propose a Personalized Feature Preference (PFP) vector to characterize the
different importance of item features to a user, and can be learned from the historical data
of existing users and the profiles of new users. By fusing the PFP, item latent features, and
user latent features, MERF estimates the Item Rating Matrix for all users over all items, and
generates an Explanation Matrix for each user. At last, MERF makes a recommendation
based on the estimated ratings of a user, and the corresponding row vector of the Explanation
Matrix quantitatively explains why an item is recommended to that user.

To improve the efficiency of MERF, we propose a parallel algorithm for the learning of
PFP, which can generate a PFP for each user concurrently. At the same time, as new ratings
continuously become available, we also propose an incremental algorithm for the updating
of PFP.

Our contributions can be summarized as follows:

(1) We propose a Meta-feature based Explainable Recommendation Framework (MERF)
for the problem of making explainable cold-start and warm-start recommendations in
a unified framework.

(2) We propose a novel concept of meta-feature to reveal the preferential relationship
between users and item features, due to which MERF can make recommendations for
cold-start users/items and warm-start ones in a consistent fashion.

(3) We propose a Personalized Feature Preference (PFP) vector to characterize the differ-
ent importance of item features to a user. By fusing PFP and meta-features, MERF can
make a recommendation with a quantitative explanation.
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(4) To improve the efficiency, we propose a parallel learning algorithm and an incremental
updating algorithm for PFP.

(5) We compare MERF with seven baseline methods on three real world datasets. The
results verify the effectiveness and efficiency of MERF. We also verify the statistical
significance of the superiority of MERF.

The rest of this paper is organized as follows. Section 2 gives an overview of the MERF.
Section 3 describes the details of meta-feature. Section 4 describes the details of PFP and
its learning and updating algorithms. Section 5 describes the details of MERF. Section 6
presents the experimental results and analysis. Finally, we discuss related works in Section 7
and conclude in Section 8.

2 Overview

Figure 1 gives an overview flow of MERF, where computation procedures are represented
by black rectangles and data structures are represented by white rectangles. As shown in
Figure 1, MERF can be divided into three stages which are described as follows.

• Preparation: The goal of preparation stage is to off-line generate latent feature matrices
of users and meta-feature matrices of item features. MERF first fuses the historical
ratings of existing users and the profiles of new users into Item Feature Rating Matrices
(IFVRMs) of different item features, and an entry in IFVRM stores the rating of a user
gives to a feature value of an item feature. MERF then generates a User Latent Feature
Matrix and meta-feature matrices of different features by factorizing the IFVRMs.

• Learning: The goal of learning stage is to on-line generate PFPs, by minimizing the
differences between the ground-truth ratings and the estimated ratings.

• Recommendation: The goal of this stage is to estimate the Item Rating Matrix for both
existing and new users and both existing and new items, and generate an Explanation
Matrix for each user. At first, based on the meta-feature matrices obtained from the
first stage and the features of items (including new items), MERF generates an Item
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Figure 1 Overview of MERF
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Latent Feature Matrix (ILFM) for each item. Then by fusing the PFP obtained from
the second stage, the ILFM, and the User Latent Feature Matrix obtained from the first
stage, MERF estimates the Item Rating Matrix for all users over all items, and generates
an Explanation Matrix for each user. Here the key that MERF can serve both cold-
start recommendations and warm-start ones lies in that the estimated item rating matrix
contains ratings of both existing and new users to both existing and new items.

As new ratings are arriving continuously, the PFPs have to be updated in time. Thanks to
meta-feature, a PFP can be updated with a constant time complexity for each new rating. In
this way, MERF can make timely recommendations for the users whose preferences change
frequently.

In this paper, a scalar is denoted by an italic capital letter (e.g.,N ), and a vector is denoted
by a boldface lowercase letter (e.g., v). A matrix is denoted by a boldface italic capital letter,
e.g., R ∈ R

N×M , and an entry in R is denoted by Ri,j . A set is denoted by a italic capital
letter (e.g., S). The main notations used throughout this paper are summarized in Table 1.

3 Meta-feature

In this section, we first give the definition of meta-feature, and then describe the details
of how to learn meta-features, which corresponds to the first stage of MERF as shown in
Figure 1.

3.1 Definition of meta-feature

As we have mentioned, a meta-feature is the latent feature of a feature of items, which is
formally defined as follow.

Definition 1 (Meta-feature) The meta-feature matrix of the i-th feature of items is defined
as a matrix Q(i) ∈ R

φi×D , where φi is the number of different possible values of the i-th
feature, and D is dimensionality of the meta-feature. The j -th row vector Q

(i)
j,∗ represents

the meta-feature of the j -th possible value of the i-th feature.

Table 1 Summary of notations

N Number of users

M Number of existing items

L Number of features of items

D Dimensionality of meta-feature and user latent feature

φi Number of different possible values taken by feature i

R ∈ R
N×M Item Rating Matrix

F (i) ∈ R
M×φi Item Feature Value Matrix of item feature i

P (i) ∈ R
N×φi Item Feature Value Rating Matrix of item feature i

Q(i) ∈ R
φi×D Meta-Feature Matrix of item feature i

C(i) ∈ R
M×D Item Latent Feature Matrix of item feature i

U ∈ R
N×D User Latent Feature Matrix

E(u) ∈ R
M×L Explanation Matrix of user u
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One can note that the meta-feature is well defined over discrete features. However, it is
easy to extend it to continuous features by quantizing their values into discrete levels.

3.2 Item feature value ratingmatrix

For generating a meta-feature matrix, we first introduce Item Feature Value Rating Matrix
(IFVRM), which models the preference of users to a value of an item feature (not items
themselves).

Definition 2 (Item Feature Value RatingMatrix (IFVRM)) The IFVRM of i-th feature is
defined as a matrix P (i) ∈ R

N×φi , where N is the number of users (including both existing
users and new users), and an element P

(i)
j,k represents the quantity of the preference of the

j -th user to the k-th possible value of the i-th feature of items.

According to Definition 2, an IFVRM P (i) consists of two parts, i.e.,

P (i) = [(P (i)
e )T, (P (i)

n )T]T, (1)

where P
(i)
e ∈ R

Ne×φi and P
(i)
n ∈ R

Nn×φi are the IFVRMs of existing users and new users,
respectively, and Ne is the number of existing users while Nn is the number of new users.

The IFVRM of existing users, P
(i)
e , can be built as a product of the historical rating

matrix R ∈ R
Ne×M and the value matrix F (i) of the i-th feature, i.e., P

(i)
e = RF (i).

F (i) ∈ R
M×φi , where an entry F

(i)
j,v = 1 if the j -th item takes value v on the i-th feature,

otherwise F
(i)
j,v = 0. Figure 2 gives an illustration of feature value matrix, where ”Director”,

”Starring”, ”Movie Genre” are movie features. The feature ”Movie Genre” has 28 possible
values which represent different genres of movies, for example, ”Romance” and ”Disas-
ter”. In the feature value matrix F (3) of the feature ”Movie Genre”, the row for the movie
”Titanic” takes the same value 1 on the genres ”Romance” and ”Disaster”, as ”Titanic” is a
movie of ”Romance” as well as ”Disaster”.

Initializing the preferences of cold-start users is still an open problem. Our idea in this
paper is to alleviate it with the help of the preference patterns hidden in the profiles of users.
We treat a preference, say ”Liking Travel”, as an item, and then the preferences recorded
in a user’s profile can be viewed as an item set. To build the IFVRM of new users, P

(i)
n ,

we apply association rule mining to the profiles of all users and the association rules can be
considered as the feature preference of new users, where each rule shares the same weight.

…
James 
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… …

Leonardo 

DiCaprio
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Winslet
… … Romance Disaster …

Titanic … 1.0 … … 1.0 1.0 … … 1.0 1.0 …
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Figure 2 An illustration of feature value matrix
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An item feature rating matrix
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Figure 3 An illustration of how an IFVRM is built

For example, if one association rule is ”Liking Travel → Liking Adventure Movie”, and we
know one new user likes travel from her/his profile, then we can infer that she/he also likes
adventure movies, and the corresponding cell in P

(i)
n of that user will be set to 1. Figure 3

gives an illustration of the building of IFVRM.

3.3 Learningmeta-featurematrix

As we have mentioned, the meta-feature matrix Q(i) is essentially the latent feature values
of the i-th feature of items, and therefore the more similar the user latent feature is to the
Q(i), the greater values which the cells of P (i) may take, i.e., the value of a cell P

(i)
j,k is

proportional to the inner product of U j,∗ and Q
(i)
∗,k , where U ∈ R

N×D is the user latent

feature matrix. Based on this insight, the IFVRM P (i) can be considered as the product of a

user latent feature matrix U ∈ R
N×D and Q(i), i.e., P (i) ≈ UQ(i)T. Then the meta-feature

matrices Q(1),Q(2), · · · ,Q(L) and the user latent feature matrix U can be learned by using
gradient descent algorithm to solve the following optimization problem:

argmin
U ,Q(i)

1

2

L∑

i=1

‖P (i) − UQ(i)T‖2F + λ

2
(‖U‖2F +

L∑

i=1

‖Q(i)‖2F), (2)

where ‖ ∗ ‖F denotes the Frobenius norm, L is the number of different item features, and λ

is the balance parameter. In (2), the meta-feature matrix Q(i) and the User Latent Feature
Matrix U are to be learned, while the IFVRM P (i) is obtained in advance through (1).

4 Personalized feature preference

People often pay different attention to different features of an item. For example, some peo-
ple may care much about the director of a movie, while the others may care much about the
genre of a movie. In this section, we first introduce a vector, Personalized Feature Prefer-
ence, which reflects how much a user care about different features, and then describe the
details of how to learn it. This part corresponds to the second stage of MERF as shown in
Figure 1.
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4.1 Definition of personalized feature preference

Definition 3 (Personalized Feature Preference (PFP)) The Personalized Feature Prefer-
ence of user u is defined as an L-dimensional vector

αu = {α(1)
u , ..., α(i)

u , ..., α(L)
u }T,

where the i-th component α
(i)
u ≥ 0 is the personal preference weight of user u to the i-the

feature, and
∑L

i=1 α
(i)
u = 1.

4.2 Learning personalized feature preference

Now we describe the details of how to learn the PFP of a user u. In order to generate
personalized feature preference, we have to estimate the Item Latent Feature Matrix (ILFM)
C(i) ∈ R

M×D on each item feature i. One can not confuse C(i) with Q(i), where C(i) is the
latent feature matrix of item with respect to i-th feature, while the meta-feature matrix Q(i)

is the latent feature matrix of i-th feature.
Thanks to the meta-feature matrix, we can generate a latent feature vector on a specific

feature for a new item, as well as for an existing item, by multiplying the specific feature
of the item with the meta-feature matrix, for which an illustration is given by Figure 4.
Formally, on the i-th feature, we can generate the corresponding item latent feature matrix
by the product between the item feature value matrix and meta-feature matrix of the i-th
feature as follow:

C(i) = F (i)Q(i), (3)

where C(i) ∈ R
M×D is the item latent feature matrix on the i-th feature, F (i) ∈ R

M×φi

and Q(i) ∈ R
φi×D are the value matrix and the meta-feature matrix of the i-th feature,

respectively.
Once the ILFM C(i) is generated, we can further estimate the Item Rating Matrix R ∈

R
N×M , where a cell Ru,m represents the rating score that the u-th user gives to the m-th

item. Intuitively, Ru,m depends on two factors. The first factor is the similarity r
(i)
u,m between

the user latent feature vector Uu,∗ and the item latent feature vector C
(i)
m,∗, 1 ≤ i ≤ L, which

can be evaluated by the following equation:

r(i)
u,m = UT

u,∗C(i)
m,∗. (4)

where U is the user latent feature matrix obtained through (2), and C(i) is the item latent
feature matrix of the i-th feature obtained through (3). The second factor is the importance

Latent features of Movie 1 

on feature Movie Genreof Movie Genre

Meta-feature matrix 

Romance War Sci-Fi

Movie 1 0.5 0 0.5

1 2 3 4

Romance 0.5 0

War 0 1.0

Sci-Fi 0.5 0

1 2 3 4

Movie 1 0.5 0

Figure 4 An illustration of generating item latent features from meta-features
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of an item feature to the user, i.e., α
(i)
u . Based on this intuition, we can estimate the rating

score of the u-th user to the m-th item as a weighted sum, i.e.,

R̂u,m =
L∑

i

α(i)
u r(i)

u,m. (5)

Note that in (5), the α
(i)
u , 1 ≤ i ≤ L, are the personalized feature preferences that are

unknown and need to be learned.
Finally, we can learn the PFP αu by minimizing the difference between the ground-truth

ratings Ru,m obtained from the ratings of users and estimated ratings R̂u,m as follow:

argmin
α

(i)
u

1
2

M∑
m

(Ru,m − R̂u,m)2,

s.t .
L∑

i=1
α

(i)
u = 1.

(6)

By Lagrangian multiplier method, after few simple derivations, we obtain

α(i)
u = b

(i)
u

c
(i)
u

+ 1

L
, (7)

where

b(i)
u = L

M∑

m=1

Ru,mr(i)
u,m −

L∑

i=1

M∑

m=1

Ru,mr(i)
u,m, (8)

c(i)
u = L

M∑

m=1

L∑

i=1

(r(i)
u,m)2. (9)
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Note that for any new user u, Ru,m = 0, then α
(i)
u = 1

L
, which means for a new user u who

does not have historical ratings to any item, the L item features share the same preference
of the new user.

Algorithm 1 gives the parallel preference generating algorithm. The time complexity of
Line (1) to Line (3) is O(LD), where D is the number of latent features, L is the number
of item features, which are all constants. Let H be the number of threads, the time com-
plexity of Line (4) to Line (12) is O(LDNM/H). Therefore, the overall time complexity
of Algorithm 1 is O(NM/H).

4.3 Updating personalized feature preference

Suppose a new rating Ru,m is observed, where u can be a new user or an existing user and
m can be a new item or an existing item. Now we need to update the personalized feature
preference αu. At first, according to (8) and (9), we can incrementally update the numerator
and denominator of the first term of (7) respectively as follows:

b′(i)
u = b(i)

u + LRu,mr(i)
u,m −

L∑

i=1

Ru,mr(i)
u,m, (10)

c′(i)
u = c(i)

u + L

L∑

i=1

(r(i)
u,m)2. (11)

Then we can incrementally update α
(i)
u as the new one α

′(i)
u , i.e.,

α′(i)
u = b

′(i)
u

c
′(i)
u

+ 1

L
. (12)

Algorithm 2 gives the updating algorithm. The time complexity of Lines from (2) to
(4) is O(LD), where D is the number of latent features and L is the number of item
features, which are all constants. And the time complexity of Lines from (5) to (11) is
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O(LD|{Ru,m}|). Thus, the time complexity of Algorithm 2 is linear in the number of
new ratings, and for each new rating, Algorithm 2 can update the PFP with constant time
complexity.

5 Explainable recommendation

In this section, we describe the details of how an explainable recommendation is made,
which corresponds to the third stage of MERF as shown in Figure 1.

5.1 Making recommendation

So far, based on meta-feature Q(i), we have generated the user latent feature matrix U (via
(2)), the item latent feature matrix C(i) for both existing items and new items (via (3)), and
the personalized feature preference αu for both existing users and new users (via (6)). Then
we estimate the item rating matrix R ∈ R

N×M using (5), and for a user u, the item mu

which has highest rating score is recommended to u, i.e.,

mu = argmax
1≤m≤M

Ru,m. (13)

5.2 Explaining recommendation

As we have mentioned, on one hand, more similar the latent feature vector Uu,∗ of a user u

is to the item latent feature vector C
(i)
m,∗ of feature i of item m, more possible the feature i of

m partially causes the user u chooses the item m. On the other hand, different features have
difference importance to a user, which is captured by the PFP vector αu. Based on these
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insights, the quantitative explanation of a user u chooses item m due to feature i, denoted
by E

(u)
m,i , can be modeled as:

E
(u)
m,i = α(i)

u r(i)
u,m = α(i)

u UT
u,∗C(i)

m,∗. (14)

Essentially, E
(u)
m,i represents the degree to which the item feature i satisfies the user pref-

erence. Based on these quantitative explanations, for a user u we can build the explanation
matrix, E(u) ∈ R

M×L, as follow:

E(u) =

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

E
(u)
1,1 ... E(u)

1,i ... E
(u)
1,L

... ... ...
E

(u)
m,1 ... E(u)

m,i ... E
(u)
m,L

... ... ...
E

(u)
M,1 ... E(u)

M,i ... E
(u)
M,L

⎫
⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎭

. (15)

The row vector E
(u)
m,∗ is exactly the explanation vector of why an item m is recommended

to user u. As for the examples mentioned in Section 1, the explanation vector of the i-
th movie ’The Relevance’ is recommended to u would be E

(u)
i,∗ = 〈1.5, 2.5〉, while the

explanation vector of the j -th movie ’The Hunger Games’ is recommended to user v would
be E

(v)
j,∗ = 〈1.5, 1.5〉.

Algorithm 3 gives the parallel explainable recommendation algorithm. The time com-
plexity of Line (2) is O(M), where M is the number of items. The time complexity of the
loop (Lines from (3) to 6)) is O(ML), where L is the number of item features. So the over-
all time complexity of Algorithm 3 is O(M(1+L)). In practice, the number of item features
is small and can be treated as a constant, therefore the overall time complexity of Algorithm
3 is approximately O(M).

6 Experiments

In this section, we compare our method MERF with baseline methods to verify its effec-
tiveness and the statistical significance of its superiority, and verify the efficiency of MERF.
All experiments are executed on a Windows 7 PC with an Intel Xeon CPU E3-1231 V3
(3.4GHz) and 16 GB RAM, and all programs are implemented in C#.

6.1 Datasets

We conduct our experiments on three real datasets, including Netlifx Dataset, IMDB dataset,
and MovieTaste dataset collected from a movie recommendation website built by us. We
align these datasets according to the movie titles, and conduct our experiments on the
aligned dataset.

• Netflix Dataset [31] Netflix Dataset contains about more than 100 million rating
records from about 480,000 users over about 17,000 movie titles. In this paper, we only
consider users who have at least 10 rating records.

• IMDB Dataset [21] We crawled movie features from IMDB including rating, screened
year, movie genre, director, leading performers and actresses. After aligning the movie
titles between IMDB and the Netflix Dataset, we finally get 6 features of movies,
namely movie rating, year, genre, director, leading performer and leading actress.
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• MovieTaste Dataset [30] To collect the data of new users and new movies, we build
a movie recommendation website, called MovieTaste. For each registered user, Movi-
eTaste collects their label, and then records their feedbacks of randomly selected 100
movies from IMDB Top-250 movies. Besides, we select 167 new movies which are not
in the Netflix Dataset and IMDB dataset, and add these movies into the candidate set
of movie recommendation.The 167 new movies are considered as the cold-start items.

6.2 Metrics

We use two standard performance metrics for evaluating the performance of our approaches
and baseline methods:

• Normalized Discounted Cumulative Gain (NDCG) NDCG is commonly used in
information retrieval and recommender system [22]. A higher NDCG value for a list of
recommended items indicates that more relevant items are ranked higher in the list. In
particular, NDCG@K measures the relevance of Top-K results and is defined as:

NDCG@K = DCG@K

iDCG@K
, (16)

where iDCG@K is the DCG@K value of ideal ranking list; DCG@K = rel1 +∑K
i=2

reli
log2(i+1) ; reli = 2r(i)−1 is a relevance value, and r(i) is the ground-truth ranking

of the i-th item in the recommended list.
• Hit Ratio (HR) HR is widely used in top-K recommendation evaluation [17, 27, 48].

Recommendation can also be regarded as a supervised learning problem. For a user, we
label the items as the positive examples if they are rated over median rating of the user,
and negative examples, otherwise. Thus, the HR of a Top-K recommendation can be
calculated as:

HR@K = 1

N

N∑

u=1

|S(u)
K ∩ P (u))|

K
, (17)

where P (u) denotes the set of positive examples of user u, S(u)
K denotes the set of top-K

rated items recommended to user u, and N is the number of users.
• Agreement Ratio (AR) We define AR to assess the explainability of MERF. Let S

(u)
K

be the set of top-K items recommended to user u, then AR is defined as:

AR@K = 1

N

N∑

u=1

⎧
⎪⎨

⎪⎩
1

K

∑

m∈S
(u)
K

g(E(u)
m,∗)

⎫
⎪⎬

⎪⎭
, (18)

where g(E
(u)
m,∗) = 1 if feature l, 1 ≤ l ≤ L, is one of the features the user u care about

and E
(u)
m,l = max{E(u)

m,1, · · · ,E
(u)
m,L}, otherwise g(E

(u)
m,∗) = 0. By AR@K , we can

check whether the features of a recommended item satisfy the preferences of the user.

6.3 Baselinemethods

We use 13 baseline methods in all, which are divided into three groups for the performance
investigation of warm-start-recommendation, cold-start recommendation, and explainabil-
ity, respectively. To set the hyper-parameters of baseline methods, on each dataset, we
randomly select 60% of the data as training set, 20% as validating set for hyper-parameter
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tuning, and the remaining 20% as testing set. We repeat this random partition five times and
report the average of the results of the five runs as the final result.

6.3.1 Baseline methods for warm-start recommendation

In order to demonstrate the performance of MERF on warm-start recommendation, we will
compare it with the following 7 baseline methods.

1. Naive MERF In order to validate the effectiveness of personalized feature preference,
we use a Native MERF where all the feature preference parameters of users are set to 1.

2. IBFM IBFM is an Integrated Bias and Factorization Model proposed by Lu et al. [29],
which can incorporate user and item’s attributes together with the latent features of
users and items.

3. UBM UBM is a Unified Bias Model which is a baseline method mentioned in [29].
UBM can make a recommendation by integrating all the aspects of items’ features.

4. UserCF UserCF (User-based Collaborative Filtering) is a classical method for recom-
mendation [39], which makes recommendations based on the similarity among users.
To apply UserCF in the experiments, we compute the user similarity matrix based on
the movie rating records.

5. ItemCF ItemCF (Item-based Collaborative Filtering) is another classical recommend-
ing method [39], which makes recommendations based on the similarity among items.
To apply ItemCF in the experiments, we evaluate the item similarity matrix using the
cosine function of the feature vectors of movies.

6. MFMF(Matrix Factorization) is proposed by Funk [14] to solve the movie recommen-
dation problem in Netflix Price. MF assumes the latent features of objects are modeled
by vectors, and different types of objects have factors with the same size.

7. BiasedMF BiasedMF (Biased Matrix Factorization) is proposed by Paterek [33], which
is an extension of MF.

8. FM FM (Factorization Machine) [36] is a general predictor which models all interac-
tions between variables using factorized parameters, including the interactions between
latent factors of item features.

9. SLIM SLIM is a sparse linear model for Top-N recommendation [32], which learns a
sparse coefficient matrix for the items in the system solely from the user purchase/rating
profiles by solving a regularized optimization problem.

6.3.2 Baseline methods for cold-start recommendation

In order to demonstrate the performance of MERF on cold-start recommendation, we will
compare it with the following 3 baseline methods which focus on cold-start problem.

1. CSEL CSEL is a context-aware semi-supervised co-training method for cold-start rec-
ommendation proposed by Zhang et al. [53], which uses a factorization model to
capture fine-grained user-item context.

2. DecRec DecRec is a matrix completion based model proposed by Barjasteh et al. [3],
which simultaneously exploits the similarity information among users and items to
alleviate the cold-start problem.

3. RAPARE RAPARE is a rating comparison based model proposed by Xu et al. [49],
which provides a fine-grained calibration on the latent profiles of cold-start users/items
by exploring the differences between cold-start and existing users/items.
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4. LoCo LoCo is a model for cold-start recommendation based on linear regression, low-
rank parametrization, and randomized SVD [40].

6.3.3 Baseline methods for explainable recommendation

In order to demonstrate the explainability of MERF, we will compare it with the following
3 baseline methods which focus on explainable recommendation.

1. EFM EFM (Explicit Factor Model) is able to generate explainable recommendations
based on explicit product features and user opinions extracted by phrase-level sentiment
analysis on user reviews [54].

2. TriRank TriRank is a generic algorithm for ranking on tripartite graphs, which is
specialized for personalized recommendations with explanations [17].

3. sCVR sCVR (Social Collaborative Viewpoint Regression) is a latent variable model
which can predict user ratings by jointly modeling concepts, topics, sentiment labels
and social relations as explanations [35].

6.4 Warm-start recommendation performance of MERF

We first examine the performance of MERF on warm-start recommendation for existing
users, using the aligned dataset consisting of Netflix and IMDB. We split the movies into
two groups, where one group consists of the top-250 movies (TOP-250) and the other the
remaining movies (NON-TOP-250), and we observe the performances on the two groups,
respectively. On each group, the ratings of each user are sorted chronologically, and the first
80% are used for training while the remaining 20% for testing. Table 2 shows the results on
TOP-250 and Table 3 the results on NON-TOP-250, from which we can have the following
observations:

(1) On TOP-250, MERF outperforms all the baseline methods. MERF performs better
than MF, BiasedMF, SLIM, UserCF and ItemCF, which verifies the advantage that
MERF can incorporate user and item’s attributes together with the latent features of
users and items. Next, MERF also outperforms IBFM and UBM, as MERF not only

Table 2 Performance of warm-start recommendation on TOP-250

HR@K NDCG@K

K = 4 K = 6 K = 8 K = 10 K = 4 K = 6 K = 8 K = 10

MERF 0.7963 0.8039 0.8128 0.8260 0.3744 0.3793 0.3881 0.4038

Naive MERF 0.7649 0.7758 0.7891 0.8021 0.3341 0.3411 0.3507 0.3641

IBFM 0.6967 0.7090 0.7204 0.7330 0.2874 0.2883 0.2895 0.2895

UBM 0.6917 0.7039 0.7147 0.7266 0.2813 0.2822 0.2838 0.2840

Basic MF 0.6858 0.6968 0.7062 0.7146 0.2556 0.2604 0.2638 0.2660

Biased MF 0.6808 0.6920 0.7016 0.7099 0.2597 0.2622 0.2646 0.2664

SLIM 0.7033 0.7108 0.7194 0.7338 0.3430 0.3489 0.3629 0.3852

UserCF 0.1986 0.3009 0.3588 0.4380 0.1667 0.2436 0.3169 0.5635

ItemCF 0.2975 0.3545 0.4317 0.5535 0.1601 0.1906 0.2337 0.3040

FM 0.1775 0.2579 0.3214 0.3878 0.2335 0.2568 0.2712 0.2801
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Table 3 Performance of warm-start recommendation on NON-TOP-250

HR@K NDCG@K

K = 4 K = 6 K = 8 K = 10 K = 4 K = 6 K = 8 K = 10

MERF 0.7508 0.7889 0.8030 0.8271 0.3155 0.3163 0.3352 0.3588

Naive MERF 0.6911 0.7087 0.7266 0.7439 0.2911 0.3072 0.3117 0.3306

IBFM 0.6290 0.6301 0.6448 0.6577 0.2619 0.2729 0.2804 0.2879

UBM 0.6033 0.6179 0.6220 0.6396 0.2570 0.2582 0.2755 0.2796

Basic MF 0.5518 0.5596 0.5651 0.5802 0.1995 0.2018 0.2099 0.2238

Biased MF 0.5140 0.5293 0.5306 0.5380 0.2130 0.2281 0.2417 0.2590

SLIM 0.5079 0.5296 0.5384 0.5578 0.2305 0.2488 0.2502 0.2719

UserCF 0.1447 0.2118 0.2633 0.2850 0.1881 0.2029 0.2533 0.3885

ItemCF 0.2221 0.2298 0.2943 0.3655 0.1307 0.1953 0.2117 0.3101

FM 0.1255 0.1625 0.2495 0.2743 0.1943 0.2081 0.2400 0.2469

incorporates more attributes of users and items than IBFM and UBM, but also takes
the difference between individuals into consideration. At last, we can see that although
FM also considers the interactions of latent factors of items, the performance of FM
is significantly far behind that of MERF, partly due to the defect that FM cannot learn
the user different preferences to different item features. In contrast to FM, MERF is
able to capture the different preferences of users to different item features by learning
a Personalized Feature Preference (PFP) vector for each user.

(2) The performance of MERF and the baseline methods on TOP-250 is better than those
on NON-TOP-250. We believe that this is because the rating records in NON-TOP-250
are sparser than those in TOP-250. We can also note, however, that even on NON-
TOP-250, MERF still outperforms the baseline methods. This result not only shows
again the advantages of MERF mentioned above, but also suggests that MERF is more
robust for sparse historical rating data, as MERF is able to generate latent features of
users and items based on not the historical ratings but meta-feature.

(3) MERF performs better than Naive MERF on both two groups, which verifies the con-
tribution of PFP (Personalized Feature Preference) to the estimation of item ratings.
As we have claimed, PFP captures the different importance of item features to users,
and fusing PFP will lead to a more accurate estimation of ratings.

6.5 Cold-start recommendation performance of MERF

We then examine the performance of MERF on cold-start recommendation, using the Movi-
eTaste dataset as new users and new items. The results are shown in Table 4, from which we
can observe that MERF is also the best compared to the baseline methods. One can also note
that performance of MERF on cold-start recommendation is better than that on warm-start
recommendation. It is because users usually make high ratings to movies of high quality,
and all the new movies are top-250 movies in IMDB. As a result, the low ratings on high
quality movies reflect preference of users more significantly than any other cases, which
explains the difference of performance between cold-start recommendation and warm-start
recommendation.
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Table 4 Performance of cold-start recommendation

HR@K NDCG@K

K = 4 K = 6 K = 8 K = 10 K = 4 K = 6 K = 8 K = 10

MERF 0.8103 0.8201 0.8367 0.8711 0.6243 0.6705 0.7045 0.7262

Naive MERF 0.7897 0.8018 0.8200 0.8477 0.5842 0.6463 0.6863 0.7021

PAPARE 0.7910 0.7938 0.8333 0.8475 0.6195 0.6482 0.6781 0.6837

CSEL 0.7870 0.7917 0.7949 0.8056 0.6205 0.6496 0.6737 0.6823

DecRec 0.7210 0.7238 0.7350 0.7950 0.5646 0.6042 0.6311 0.6480

LoCo 0.6909 0.6920 0.7011 0.7275 0.5004 0.5128 0.5242 0.5502

6.6 Explainability

To assess the explainability of MERF and the baseline methods, we first randomly choose
N = 100 users who have profiles from which we can know the item features the users
care about, and then make top-K recommendations to them. For each user, we mark item
features as the features she/he cares about, if she/he chooses them as her/his preferences in
her/his profile. For example, if a user chooses disaster movie as one of the preferences in
the profile, we know the ground truth that this user likes disaster movie. The metric AR@K

(defined in (18)) can check whether the features of the item recommended by MERF satisfy
the known preferences of the user by comparing the matrix E(u) (defined in (15)) with the
ground truths.

Table 5 shows the AR@K of MERF and the baseline methods. At first, we can find that
MERF outperforms all the baseline methods, which indicates that due to meta-features, PFP
and Explanation Matrix, MERF captures the user attention to different features better than
the baseline methods do. Besides, we can also observe the decline trend of AR@K with
increasing K . This is because as K increases, the value of the denominator of (18) grows
faster than that of the numerator.

6.7 Test of significance

Next, we do the Friedman test [6] to show the superiority of our method. We run MERF
and baseline methods 10 times for K = 4, 6, 8 and 10, respectively, where we randomly
exchange 5% data of training set and test set at each time. Let ri

j be the rank of the j -th
method on the i-th test. The Friedman test compares the average ranks of our methods and
the baseline methods, where the average rank of the j -th method is Rj = 1

N

∑
i ri

j , where
N = 40 is the number test in our case. The null-hypothesis of Friedman test states all the

Table 5 Performance of
explainability AR@K

K = 4 K = 6 K = 8 K = 10

MERF 0.713 0.697 0.671 0.633

sCVR 0.620 0.537 0.558 0.490

TriRank 0.451 0.487 0.377 0.352

EFM 0.473 0.417 0.384 0.301
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algorithms are equivalent, and so their ranks Rj should be equal [9]. Iman and Davenport
[38] show that the original Friedman statistic χ2

F is undesirably conservative and propose a
better statistic

FF = (N − 1)χ2
F

N(k − 1) − χ2
F

, (19)

where k is the number of methods; χ2
F = 12N

k(k+1)

[∑
j R2

j − k(k+1)2

4

]
. In our case, N = 10×

4 and k = 8, thus the rejection region of null hypothesis at 95% confidence level is FF >

μ0.95 = 2.04. Based on (19) and the results shown in Table 6, we get χ2
F = 277.53 and

FF = 4388.03 > 2.04 for HR of existing users, χ2
F = 279.37 and FF = 17203.11 > 2.04

for NDCG of existing users, χ2
F = 217.47 and FF = 135.63 > 2.04 for HR of cold-start

users, and χ2
F = 217.47 and FF = 135.63 > 2.04 for NDCG of cold-start users. Thus, the

test statistics fall into the rejection region, which indicates that the alternative hypothesis, the
average accuracies of our method and the baseline methods are not equivalent, is accepted.

Since the alternative hypothesis of Friedman test is accepted, we further proceed with a
post-hoc test, Bonferroni-Dunn test [11], to make a further comparison between MERF and
each baseline method. The performances of a pair of compared methods are significantly
different if the corresponding average ranks differ by at least the critical difference

CD = qα

√
k(k + 1)

6N
, (20)

where the critical value qα is based on the Studentized range statistic divided by
√
2 [9]. By

comparing the performance of MERF with those of the baseline methods, we calculate the
average rank differences between MERF and baseline methods. As shown in Table 7, all the

differences are greater than the critical difference CD = qα

√
k(k+1)
6N = 1.66, where k = 8,

N = 40, and qα = 3.03, at 95% confidence level. As a result, MERF is superior to all the
baseline methods at 95% confidence level.

In summary, MERF is an effective method, and the performance of MERF is better than
all the baseline methods.

Table 6 The average rank comparison

Warm-start recommendation Cold-start recommendation

(HR) (NDCG) (HR) (NDCG)

MERF 1.00 1.00 1.05 1.05

Naive MERF 2.00 2.00 2.00 2.00

IBFM 3.05 3.00 2.95 2.95

UBM 3.95 4.00 3.95 3.95

Basic MF 5.10 5.95 4.10 4.10

Biased MF 5.90 5.05 5.95 5.95

UserCF 7.05 7.00 8.00 8.00

ItemCF 7.95 8.00 7.00 7.00
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Table 7 The rank differences between MERF and baseline methods

Warm-start recommendation Cold-start recommendation

(HR) (NDCG) (HR) (NDCG)

IBFM 2.05 2.00 1.90 1.90

UBM 2.95 3.00 2.90 2.90

Basic MF 4.10 4.95 3.05 3.05

Biased MF 4.90 4.05 4.90 4.90

UserCF 6.05 6.00 7.00 7.00

ItemCF 6.95 7.00 5.95 5.95

6.8 Efficiency

To verify the efficiency of MERF, we first run our learning and recommendation algo-
rithms with 8 threads. Figure 5 shows the running time of parallel personalized feature
preference learning algorithm (Algorithm 1 ) and parallel explainable recommendation
algorithm (Algorithm 3) are both linear in the number of users and items, which verifies the
correctness of time complexity analysis of Algorithm 1 and Algorithm 3.

Next, we fix the number of users and items (#User = 20000, #I tem = 1000), and inves-
tigate the efficiency of Algorithm 1 and Algorithm 3 with different number of threads. We
use T threads to run the algorithms by setting T = 2, T = 4, T = 6, T = 8, respectively.
Figure 6a indicates that the running time of the two algorithms decreases with the increase
of the number of threads.

We also run the personalized feature preference updating algorithm (Algorithm 2)
with different number of new ratings and a fixed number of users and items (#User =
20000, #I tem = 1000), and record the running time. As shown in Figure 6b, the running
time of Algorithm 2 is linear in the number of new ratings, which verifies the correctness of
time complexity analysis of Algorithm 2.
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Figure 5 The running time of personalized feature preference generating and parallel recommendation
algorithm
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Figure 6 a The running time of parallel personalized feature preference learning (Algorithm 1) and par-
allel explainable recommendation (Algorithm 3) vs. different number of threads; (b)The running time of
personalized feature preference updating (Algorithm 2) vs. the number of new ratings

7 Related works

In this section, we briefly introduce the related works about recommendation based on latent
feature and explainable recommendation.

7.1 Latent feature based recommendation

Zheng et al. [56] present an approach, called User-Centered collaborative Location and
Activity Filtering (UCLAF), which applies collaborative filtering to find like-minded users
and like-patterned activities at different locations. UCLAF models the user location-activity
relations as a three-order tensor and uses a context-aware tensor decomposition to address
the sparse data problem in mobile information retrieval. Elbadrawy et al. [13] introduce a
User-specific Feature-based Similarity Models (UFSM), where a linear similarity function
is estimated for each user that depends entirely on features of the items previously liked by
the user, which is then used to compute a score indicating how relevant a new item will be to
that user. Hu et al. [19] propose a generalized Cross Domain Triadic Factorization (CDTF)
model based on the triadic relation user-item-domain, where the users’ rating on different
domain’s items are modeled by a three-order tensor denoting the dimensions of user, item
and domain. In this way, CDTF can capture the interactions between domain-specific user
factors and item factors. Li et al. [28] integrate a latent space matching procedure and a
refining process to identify the matching, and propose a transfer-based method to improve
the recommendation performance.

To overcome the issue of the sparsity of user-item rating data, Kim et al. [25] introduce
a latent factor modeling method which exploits not only contextual information but also
the numbers of ratings given to items. Yu et al. [52] propose a matrix factorization rec-
ommendation model which integrates social network information like trust relationships,
rating information of users and users’ own knowledge. Different from previous works, such
recommendation model can make recommendations considering the user’s own knowl-
edge or expertise in a recommending field. To address the issue of the diversity of friend
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recommendations in signed social networks, Agarwal et al. [1] introduce an adaptive
consensus based framework which balances the diversity and consensus of the recommenda-
tions by employing a variable-length genetic algorithm. Jiang et al. [23] present a real-world
job recommender system where a probabilistic model is proposed to cluster users based
on the click behavior of users and make the job recommendations based on the learned
corresponding prediction models for individual clusters.

A few of latent feature based methods have also been proposed for cold-start recom-
mendation. Lu et al. [29] propose an Integrated Bias and Factorization Model (IBFM) for
business recommendations, which employs a sampling strategy to generate the factor vec-
tors for new users and new businesses based on similar users/businesses. Zhao et al. [55]
present a Behavior Factorization model which separately models users’ topical interests that
come from various behavioral signals in order to construct better user profiles, and further
employs matrix factorization techniques to model each user’s behaviors as a separate exam-
ple entry in the input user-by-topic matrix. Gantner et al. [15] propose a method that maps
users or items to a latent feature space with a matrix factorization, by which the factors of a
MF model trained by standard techniques can be applied to the new-user and the new-item
problem. Gunawardana et al. [16] propose a Boltzmann machine based probabilistic model
which encodes collaborative and content information as latent features so that information
of different types is automatically combined. Barjasteh et al. [3] propose a general algo-
rithmic framework based on matrix completion that simultaneously exploits the similarity
information among users and items to alleviate the cold-start problem. Xu et al. [49] propose
a rating comparison strategy (RAPARE) to learn the latent profiles of cold-start users/items,
which provide a fine-grained calibration on the latent profiles of cold-start users/items by
exploring the differences between cold-start and existing users/items. Silva et al. [44] make
a hypothesis that users consumption preferences are biased to non-popular items. Based on
this hypothesis, in [44], the authors propose two recommender algorithms to address the
pure cold-start problem based on the user coverage maximization.

A few works that can learn latent features from information networks for cold-start rec-
ommendation have also been reported recently. Sedhain et al. [40] propose a learning based
approach for the cold-start problem to leverage social network data via randomized SVD.
Zhu et al. [58] propose a recommendation model which integrates the auxiliary information
in multiple heterogeneous information networks (HINs) and transfers item latent informa-
tion from different networks to help the recommendation task in a given network. Duricic
et al. [12] propose an approach to generate a similarity matrix that is used to select the
k-nearest neighbors for recommending items, by applying regular equivalence to a trust
network where edges represent explicit or implicit trust relationships between users.

Recently, inspired by the power of deep learning, some works that apply neural networks
to learn the latent nonlinear representations of users and items for recommendations have
also been reported. Basically, these works fall into four categories, i.e., CNN based methods
[20, 25, 51], auto-encoder based methods [24, 50], Recurrent Neural Network (RNN) based
methods [4, 47], and attention network based methods [7, 42, 45]. Specifically, in [42],
the authors propose an attention-based model named Attentional Content & Collaborate
Model (ACCM), which adaptively integrates the Content-Based (CB) recommendation and
Collaborative Filtering (CF) based recommendation. To make ACCM also work for cold-
start scenarios, ACCM is learned via a cold sampling strategy which can simulate the cold-
start users or items by randomly shadowing the historical feedback information of some
users and items.
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7.2 Explainable recommendation

Recent years, many researches aim at providing explanations in the context of recommen-
dation systems. Most existing methods for explainable recommendation apply topic models
to analyze user reviews to provide descriptions as explanations for the recommendations
they make [2, 5, 17, 34, 35, 37, 54, 57].

Zheng et al. [57] propose a factor model, named Multiple Similarities Collaborative Matrix
Factorization (MSCMF), to address the problem of predicting new drug-target interactions.
MSCMF assumes that aweighted linear combinations of a set of similarities can be approximated
by the inner product of the corresponding two drugs’ factor vectors, where the weights can be
taken as the reasons why these two drugs are interacted according to the similarities. Barbi-
eri et al. [2] propose a stochastic topic model, called WTFW (Who to Follow and Why), for
the link prediction with explanations for user recommendation in social networks. WTFW
not only predicts links, but also for each predicted link it decides whether it is a ”topical” or
a ”social” link, and based on this decision it produces different types of explanations. How-
ever, the explanations, described by a set of Top-k features (for ”topical” link) or common
neighbors (for ”social” link), are qualitative, while ours explanations are quantitative. Peng
et al. [34] propose an unsupervised probabilistic model to learn the latent factors of users
and products. Within the latent topic space, Peng et al. explain the review rating and review
text. Ribeiro et al. [37] propose LIME, an explanation technique that explains the predic-
tions of a classifier in an interpretable and faithful manner, by learning an interpretable
model locally around the prediction. Zhang et al. [54] propose an Explicit Factor Model
(EFM) to generate explainable recommendations, meanwhile keep a high prediction accu-
racy. He et al. [17] devise a generic algorithm for ranking on tripartite graphs — TriRank—
and specialize it for personalized recommendation, by extracting aspects (i.e., the specific
properties of items) from textual reviews. Ren et al. [35] propose a latent variable model,
called social collaborative viewpoint regression (sCVR), for predicting item ratings based
on user opinions and social relations. However, these works often depend on user review
mining, which are unsuitable for cold-start cases where reviews of new user are unavailable.

Recently, our team has published two new works on explainable recommendation,
including [18] and [43]. In [18], Hou et al. propose an Aspect-based Matrix Factorization
(AMF) model, which is able to improve the accuracy of rating prediction by collabora-
tively decomposing the rating matrix with a fusion of the auxiliary information extracted
from aspects. In AMF, the reason why a recommendation is made to a user is quantitatively
explained by two proposed metrics, User Aspect Preference (UAP) and Item Aspect Qual-
ity (IAQ), which quantify user preference to a specific aspect and the review sentiment of
item on an aspect, respectively. In [43], Shi et al. model the heterogeneous objects involved
in a recommender system by a Heterogeneous Information Network (HIN), and propose
a semantic path based personalized recommendation model, SemRec, to predict the rating
scores of users on items, where the semantic path with personalized weight can be regarded
as the explanation of recommendations. However, these works only focus on the explana-
tion of recommendations and also depend on user review mining, which makes them only
suitable for warm-start recommendation problems, too.

8 Conclusions

In this paper, we propose a unified framework, called Meta-Feature based Explainable Rec-
ommendation Framework (MERF), for both cold-start and warm-start recommendations
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with quantitative explanations. Meta-feature reveals the preferential relationship between
users and item features, due to which MERF can make recommendations for cold-start
users/items and warm-start ones in a consistent fashion. We propose a Personalized Feature
Preference (PFP) vector for MERF to characterize the different importance of item features
to a user. By fusing PFP and meta-features, MERF can make a recommendation with a quan-
titative explanation. To improve the efficiency, we propose a parallel learning algorithm and
an incremental updating algorithm for PFP. We conduct the experiments on three real world
datasets, and compare MERF with seven baseline methods. The experimental results verify
the effectiveness and efficiency of MERF and the statistical significance of the superiority
of MERF compared with baselines.
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