Time Lag Aware Sequential Recommendation

Lihua Chen
School of Computer Science
Sichuan University, China
clhua@outlook.com

ABSTRACT

Although a variety of methods have been proposed for sequential
recommendation, it is still far from being well solved partly due
to two challenges. First, the existing methods often lack the simul-
taneous consideration of the global stability and local fluctuation
of user preference, which might degrade the learning of a user’s
current preference. Second, the existing methods often use a scalar
based weighting schema to fuse the long-term and short-term pref-
erences, which is too coarse to learn an expressive embedding of
current preference. To address the two challenges, we propose a
novel model called Time Lag aware Sequential Recommendation
(TLSRec), which integrates a hierarchical modeling of user prefer-
ence and a time lag sensitive fine-grained fusion of the long-term
and short-term preferences. TLSRec employs a hierarchical self-
attention network to learn users’ preference at both global and
local time scales, and a neural time gate to adaptively regulate the
contributions of the long-term and short-term preferences for the
learning of a user’s current preference at the aspect level and based
on the lag between the current time and the time of the last behav-
ior of a user. The extensive experiments conducted on real datasets
verify the effectiveness of TLSRec.
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1 INTRODUCTION

In recent years, sequential recommendation, also known as session-
based or sequence-aware recommendation, has been attracting
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increasing interest of researchers [7, 21]. Sequential recommender
systems aim to capture the time-sensitive preference (or needs) of
users by modeling the sequential dependency between their behav-
iors based on their historical interaction data (e.g., click, purchase,
and check-in) that are collected sequentially by online platforms
such as e-commerce websites and location-based networks. The
information about the sequential dependency and time-sensitive
preference can be used for applications where items need to be
recommended based on a user’s previous interactions. For example,
a sequential recommender system can timely recommend AirPod
to a user after she/he purchases an iPhone.

1.1 Related Work

A variety of methods have been proposed for sequential recom-
mendation. Early works are often based on Markov chain which
assumes each interaction highly depends on its previous ones
[9, 21, 24, 32, 33]. Recently, inspired by the impressive success of
deep learning techniques in the fields of natural language process-
ing and computer vision, lots of deep learning based models have
also been proposed for sequential recommendation and achieved
the state-of-the-art performance [7, 36]. Early deep learning based
methods utilize recurrent neural networks (RNN) to characterize
the dynamics of interaction sequences [6, 10, 11], which however
suffers from inability to capture the long-term dependency be-
tween interactions, i.e., one interaction likely depends not only on
the recent interactions but also on early ones. To overcome this
drawback, another line of deep learning based methods employs
attention mechanism [2, 5, 17-19, 22, 27-29, 31, 34] and graph neu-
ral network (GNN) [4, 13, 30, 32] to model sequential dependency
relationships between interactions and identify relevant items.

1.2 Challenges

Notwithstanding the improvements on sequential recommendation,

it is still far from being well solved partly due to the following two
challenges.

¢ Unification of Stability and Fluctuation of Preferences

In sequential recommender systems, user behaviors are of-

ten organized into sessions or transactions and basically

driven by a mix of two factors, long-term preference and

short-term preference. The long-term preference reflects a

user’s general interest which usually changes slowly and

keeps relative stable across sessions, while the short-term

preference represents a user’s taste in a session which might

deviate from her/his long-term preference [8, 14, 26]. For

example, a user usually prefers to "classic music", but prob-

ably in some days she/he is particularly fond of "rock and

roll" because of the influence of her/his friends. However, the

existing methods for sequential recommendation often treat
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the user preference as a flat distribution over sessions, with-
out distinguishing its global stability and local fluctuation,
which might degrade the learning of user preference. We
need a method which can capture the stability of long-term
preference at global time scale, as well as the fluctuation of
short-term preference at local time scale.

e Fine-grained Fusion of Long-term and Short-term Pref-
erences To make effective sequential recommendations, it is
extremely important to simultaneously capture users’ long-
term preferences across different sessions and their short-
term preferences in recent sessions, so that the current pref-
erence of users can be learned. Recently, some sequential
recommendation models have been proposed for fusing the
embeddings of long-term preference and short-term prefer-
ence with static weights as hyper-parameters [1, 26] or using
dynamic attentional coefficients produced by an attention
network [8]. However, no matter whether the static weights
or the dynamic attentional coefficients they use, in the exist-
ing models a preference embedding vector is weighted by a
scalar, which implicitly assumes that different dimensions in
the same preference embedding have the same importance.
We argue that such scalar based weighting scheme is too
coarse for learning an expressive fused preference embed-
ding, as in real world, a user’s behaviors might depend more
on some aspects than on other aspects of preference. For
example, a user might buy a science fiction book because
the genre aspect of her/his long-term preference to movie
is science fiction and she/he currently likes reading. In this
example, the genre aspect should be weighted more than
other aspects of the long-term preference. Therefore, we
need a more fine-grained fusing mechanism that can adap-
tively capture the different contributions of different aspects
of long-term preference and short-term preference for the
fusion of them.

1.3 Contributions

To address the above challenges, we propose a novel model called
Time Lag aware Sequential Recommendations (TLSRec), which
integrates a hierarchical modeling of user preference and a time
lag sensitive fine-grained fusion of the long-term and short-term
preferences. At first, in contrast with the traditional sequential
recommendation methods that capture the long-term preference
directly from the flat sequence of interactions without considering
the preference fluctuation between local sessions, TLSRec can si-
multaneously model the global stability and local fluctuation of a
user’s preference with a hierarchical self-attention network con-
sisting of a short-erm preference learning layer and a long-term
preference learning layer. Such unified modeling offers TLSRec the
ability to understand a user’s preference at both local and global
time scales. Particularly, in order to capture the preference fluctu-
ation between local sessions, TLSRec learns a session embedding
for each session to encode a user’s preference local to a session,
with a self-attention module at the short-term preference learning
layer. At the same time, in order to capture the intrinsic stable
preference of a user, TLSRec will pool the session embeddings into
a long-term preference embedding with a multi-head self-attention
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module at the long-term preference learning layer. Due to the dif-
ferent self-attention heads, not only the long-term dependency
between sessions but also the interactions between dimensions of
session embeddings can be perceived by the long-term preference
embedding to enhance its ability to capture the stable intrinsic
preference.

To overcome the challenge of fine-grained fusion of the long-
term preference and short-term preference for sequential recom-
mendations, inspired by the idea of the gates in long short-term
memory (LSTM) [12, 20], we propose a neural time gate for TLSRec
to learn a fused preference embedding aware of time lag. Compared
with traditional methods which weigh the long-term preference and
short-term preference with manually defined scalars as vector-wise
weights, the proposed neural time gate has two advantages. First, it
offers TLSRec the ability to adaptively regulate the contributions of
the long-term preference and the short-term preference based on
the time lag. The idea here is that which preference accounts more
for a user’s next behavior heuristically depends on the time lag,
i.e., how long has it been since her/his last behavior. As we will see
in later experiments, the neural time gate will learn to act in accor-
dance with the intuition that the longer (shorter) the time lag, the
more the impact of a user’s long-term (short-term) preference on
her/his next behavior. Second, in contrast with the existing works,
the neural time gate offers a fusion of the long-term preference and
short-term preference at a finer granularity level. Unlike the exist-
ing works, the neural time gate will generate a gating vector instead
of a scalar, whose dimensions serve as dimension-wise weights to
differentially weigh the corresponding dimensions of the long-term
embedding and short-term embedding. Due to the gate based fusion
of the long-term preference and short-term preference, TLSRec can
learn a more representative and comprehensive hybrid embedding
for current preference. Finally, the contributions of this paper can
be summarized as follows:

e We propose a novel model called Time Lag aware Sequential
Recommendations (TLSRec), which can capture the stability
and fluctuation of user preference, and learn a fused prefer-
ence embedding with a fined-grained fusion of the long-term
preference and short-term preference.

e We propose a hierarchical self-attention network to unite
the learning of the long-term preference and short-term
preference, which leads to a better comprehension of the
stability of user preference at global time scale as well as the
fluctuation of user preference at local time scale.

e We propose a neural time gate to offer a gate based fine-
grained fusion of the long-term preference and short-term
preference at the dimension level, by which a more represen-
tative and more comprehensive fused preference embedding
can be learned.

e We extensively evaluate TLSRec on real-world datasets. The
experimental results demonstrate the general improvements
of TLSRec over the baselines, as well as the effectiveness of
the proposed hierarchical self-attention network and neural
time gate.
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2 PRELIMINARIES

Let U be a set of N users and V a set of M items. The inter-
actions of user u € U sorted chronologically is organized as
a sequence of T sessions 8% = (S”,S;‘, .- ,S%). Each session
S;‘ = {v;"l,v;"z, e ’UZ\SE’I} is a subset of V, where v;"j eV
(1 <j < |8}|) is the jth item user u interacts with in the session
S} Let t(v) be the time when the interaction with item v € V hap-
pens, and then for any 0¥ € S} and any v]l.‘ € S]’.‘, t(v}) < t(v}.‘) if
i <j.

Givenauser u € U and her/his historical sessions S* = (S}, S/,
e ,S%), we want to recommend k items that u will most prob-
ably interact with in the next session S¥_,. This problem can be
formulated as a ranking problem of all items for user u based on
the rating prediction 7, ., of user u over item v € V.

3 PROPOSED MODEL
3.1 Overview of TLSRec

The architecture of TLSRec is shown in Figure 1. As we can see
from Figure 1, given as inputs the historical session sequence
(8¢, 85, -+ ,S%) of a specific user u, the lag At between the time
when the recommendation is made and the time of the last interac-
tion of u, and a candidate item v, TLSRec is supposed to produce
the predicted rating 7y, of u on v.

First, TLSRec uses an M-dimensional one-hot vector to encode
an item, and transforms each item v;." ; in each session S;‘ to its

corresponding item embedding e:.fj e R4 through the item embed-
ding layer, where d is the dimensionality of embeddings, 1 < i < T,
and 1 <j < |8}

Then at the short-term preference learning layer, the item em-
beddings in a session S}* will be aggregated into its corresponding
session embedding s}’ € R? with a self-attention module shared
across sessions. The session embedding s}* encodes user u’s short-
term preference which is local to session S}, and the differences
between them reflect the fluctuation of user preference among short
time periods. At the same time, note that the current short-term
preference embedding 2!} . is just the same as the last session
embedding s, as the current preference of a user is often revealed
by the interactions in her/his most recent session [34, 35].

The task of the long-term preference learning layer is to gener-
ate the long-term preference embedding z; ng € R4 by fusing the
session embeddings with a multi-head self-attention module. As we
have mentioned before, the multiple self-attentional heads enable
TLSRec to capture the interactions between dimensions of session
embeddings, which leads to the more representative and compre-
hensive attentional session embeddings z} € R at the global time
scale. Meanwhile, as the same as the existing transformer-based
models do [15, 22, 29], TLSRec will incorporate the session embed-
dings with a learnable position embedding p; € R? (1 < i < T)
before feeding them into the multi-head self-attention module, so
that the temporal dependency between sessions can be perceived
by the long-term preference embedding. At last, the attentional
session embeddings z¥ are fused into the long-term preference em-
bedding z;7 ng via a vanilla attention module, by which the long-term
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preference can be aware of the different contributions of different
sessions.
Once the long-term preference embedding z;; ng and the short-

term preference embedding Zghort are prepared, TLSRec will merge
them through the neural time gate to generate the final preference
embedding z,,. For regulating the contributions of the long-term
preference and the short-term preference, the neural time gate
will generate an intermediate gate vector g € R? based on the
time embedding y € R? of the time lag At to adaptively weight
the dimensions of zll:) ng and z;‘hort. At last, TLSRec will make the

rating prediction 7y, based on the inner product of the preference
embedding z,, and the item embedding e,, of the candidate item v.

3.2 Hierarchical Self-Attention Network

3.2.1
ding e, € R4 by a lookup over a learnable matrix W
ie,ey = WI’U, where v € RM is a one-hot vector representing the
item v. For the items {0?,1’ U;"Z, S, U:'l,m} of session S}* of a user
u, we horizontally assemble their item embeddings into an item
ef I, € RO
jth column e;"j eR? (1 <j<m)is the embedding of item v}"

Item Embedding. For any item v € V, we obtain its embed-
e RAXM

embedding matrix E; = [ , where m = |S;| and the

;-
3.2.2  Short-term Preference Learning. Given a user u € U and
her/his historical session sequence S* = (S“,S;, s S%), the
task of the short-term preference learning layer is to generate the
session embeddings s representing u’s preference local to each ses-
sion S¥, 1 < i < T, using a self-attention module. For this purpose,
each item embedding e;" j in session S} will first be transformed to
three vectors, a query vector q; j € R9, a key vector kije R4, and

a value vector v; ; € R?, 1 < j < m, via the following operations:

1)
m dxm gS _ [f...1m dxm yS _
]j=1 e R Ky = [k,,j]j:1 e R LV =
[07,;172, € R™™, and WS e R4 WK e A4 WY e p¥xd

are the projection matrices that will be learned. Then we generate
the attentional item embeddings e}’ ; (1 £ j £ m) using the self-

05 = W2E: K5 = WXE,, VS = WE;,

where le = [qij

attention mechanism [29]:

Ei = SelfAttention(le, Kis, Vis) = Visg, (2)

F. — [sU dx A — (Q)'K?
where E; = [ei’j]j"l1 € R¥M and A = softmax(T) €
R™MXM is the self-attention matrix. The cell a; j atthe jthrow and Ith

column of A represents the attention score of the jth item v} ;to the

Ith item v*, in session S¥, and can be computed as a; ; = M,
il ! /s 2my 4k
T
where a; ; = % is the unnormalized attention score. Finally,

the session embedding s} is generated by summing up over the
attentional item embeddings E;‘ ; 1<j<m):

m
u _ ~u
=yl

Jj=

(3)

—_

As we will see later, the last session embedding s% will be used as the

current short-term preference embedding z;‘hort since it represents
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Figure 1: The architecture of TLSRec.

a user’s current preference which might deviate from her/his long-
term preference.

3.2.3 Long-term Preference Learning. The task of the long-term
preference learning layer is to generate the long-term embedding

z, ng € R? encoding the long-term preference of user u at the

global time scale, by using a multi-head self-attention module to
fuse her/his local preferences represented by the session embed-
dings s¥ € R? (1 < i < T) which are outputs of the session
embedding layer. As self-attention mechanism is not aware of the
temporal positions of inputs, therefore to capture the temporal
dependency between session embeddings, we first enhance each

session embedding s¥ by injecting a learnable position embedding
pi € R as follow:

S=S+P, (4)

where § = [E;‘]iTzl € RT js the enhanced session embedding
T dxT

lisy € R

€ R¥T js the position embedding matrix, and

matrix, § = [s¥
matrix, P = [pi]iT:1
3‘}4 = s;‘ + pi.

Now we are going to generate the attentional session embedding
matrix Z = [z;‘]l.T:1 e RIxT
the attentional session embedding corresponding to s}‘. We first

is the original session embedding

, where each column z:.‘ e RY is

define the basic multi-head self-attention function for matrix S =
[E}‘]IAT:1 € RXT a5

MultiHeadSelfAttention(g) = WOCOncat(H1; ---3Hp), (5)

where Concat(Hj;--- ;Hy) € RAXT represents the vertical con-

catenation of the h heads H; € RAXT (1 <j<h),and WO e R9¥d
is a learnable projection matrix. Similar to Equation (1), in order to
generate each header Hj, we build the query vector, the key vector,
and the value vector for each enhanced session embedding via the
following transformations:

Q? = W]Q§ KJH = Wng, VjH = WJ.V§, 6)
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Then as same as Equation (2), each attention head Hj is obtained
by the self-attention mechanism:

H; = SelfAttention(Q}', K}, V})
(@K} )

Vd/h

; Q WK wV e péxd
where h is the number of heads and VVJ , VV} R VVJ € Rn”*% are the
learnable transformation matrices. Note that due to the sequential
nature, it is supposed that the ith attentional session embedding z;
depends only on previous i — 1 sessions. Therefore, we will mask
the connection between q; and k; if i < j, by substituting zero for

()
= VJ-Hsoftmax(

q;rk 7, where q; and k; are the ith column of Q (the query vector
of z!) and the jth column of K (the key vector of z}‘), respectively.
As the transformer-based models do [29], to stabilize and accel-
erate the training of the multi-head self-attention network, we add
a residual connection followed via a normalization:
Norm(MultiHeadAttention(g) + §) 3)
For a matrix X = [x,']l.T:l € R9T the normalization function is
defined as

x —
ax® K

Vol +e

where & € R? and f € R? are learnable scaling factors and bias
terms, ® represents element-wise product, y and o2 are the mean
and variance of x, respectively, and € is a positive constant in case
the illegal division incurred by zero variance.

To capture non-linear interactions between the latent dimen-
sions, we further apply a feed-forward network FFN to the output
of Equation (8). Then the final attentional session embedding matrix
can be obtained by:

+B 09

Norm(X) = [norm(x,-)]iTzl, norm(x) =

Z = FFN

Norm (MultiHeadAttention(g) +S )), (10)
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where the feed-forward network is defined as

FEN(X = [x;]]-; € R™T) = [ffn(x;)]]

i=1°
fin(x € Rd) = WS max(0, Wix + b)) + b an
=Wy > W1 1) + b2,

where WlF € Rédxd, WZF € R4 b ¢ R4 and by € RY are
the learnable transformation matrices and bias terms. Note that
Equation (10) constitutes a multi-head self-attention block, and in
practice we can stack more than one multi-head self-attention block
(i.e., iteratively apply Equation (10)) to enhance the expressiveness
of the attentional session embeddings.

Once the attentional session embeddings z} are obtained through
Equation (10), we can finally generate the long-term preference
embedding z;! ng via a vanilla attention module:

exp (FTpWLzY + b))
STy exp (fFoWezt + by))

where w; is the attentional coefficient of z?, ¢ is the ReLU activation
function, W, € R9%d and by € R? are the learned transformation
matrix and bias terms, respectively, and f,, € R9 is the embedding
of user u. Similar to item embedding, f, is also obtained by a lookup
over a learnable user embedding matrix WU € RAXN; fu =W,
where u € RV is the one-hot encoding of user .

. (12

T
u — LU -
Zlong - z ‘wlzi » Wi =
i=1

3.3 Neural Time Gate

Now the long-term preference embedding zl'f) ng and the short-term
preference embedding z¥} . have been prepared by the hierarchical
self-attention network. Next we will produce the final preference
embedding used for rating prediction, by fusing z}! ng andz}j  via
the proposed neural time gate.

The task of the neural time gate is to adjust the contributions
of the long-term preference embedding and the current short-term
preference embedding at dimension level, based on the lag At be-
tween the time of last interaction and the time when a recommenda-
tion needs to be made. To encode the time lag into an intermediate
embedding, we first discretize it by its multiples of the minimum
time gap Apin bewteen any two successive interactions of a give
user. In this idea, the discretized time lag § € N is computed as

é = min([ At

1.0), (13)

Amin
where C € N represents the maximal value of §. By Equation (13),
the At is mapped to a positive number not more than C. Then we
can get the time embedding y € R? by a lookup over a learnable
embedding matrix Y € R%*C as follow:

y=Y8, (14)

where § € RC is the one-hot vector of the discretized time lag.
Then the normalized gating vector g € R4 can be computed by the
Sigmoid function

u
short

(15)

where W;, W, Wg € R%d and bg € R4 are the learnable weight
matrices and bias vector, respectively. Finally, the fused preference

g= sigmoid(WlZﬁmg + Wiz + Wsy + by),
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embedding of the given user u is obtained by the following fusion
based on g:

zy=g®zy ,+(1 —g)®zl’fmg, (16)
where ® represents element-wise product. Note that g is a vector
rather than a scalar, which enables the neural time gate to regu-
late the contributions of the long-term preference and short-term

preference at the dimension granularity.

3.4 Rating Prediction

Finally, we adopt a dot product of the fused preference embedding
zy, and the item embedding e, as the prediction of the normalized
rating that user u gives to item v, i.e.,

.o = sigmoid(zXe,). (17)
3.5 Model Learning
3.5.1 Training Set Building. We first build a training set O for

each user u, where each instance 0 € O" is a sequence of T + 1
sessions, i.e 0 = (S}, -~ ,S%, S¥+1>' During the training, the first
T sessions S, - - - ,S% are used as input of the model, while the
last session S7, | serves as ground truth for the supervision of
the training. For a training data set, a user’s sessions are divided
whenever the time interval between two successive interactions is
more than a chosen threshold.

Since the length of different session sequences might be different,
for a sequence with length greater than T, we use a sliding window
of width T to split it into subsequences of the fixed length T + 1,
while for a sequence with length less than or equal to T, we use
the first session to pad to the left to the sequence until its length
becomes T + 1. Similarly, the length of a session (i.e. the number
of items contained in a session) might also be different from each
other. For a session whose length is less than the length of the
longest session, we will repeatedly pad that session with its last
item until its length becomes m, where m = max, eq,1<; <7(IS¥]).

3.5.2  Model Optimization. As our goal is to recommend a ranked
list of items, we are more interested in the relative ranking order
of the rating predictions rather than their absolute values. For a
training instance o = (S1, -, ST, ST+1), let V7 = S741 be the
ground truth. For each item v € V", we sample an unobserved
item v’ ¢ V] to form a negative sample set V, . We expect the
predicted rating of an item v € V;} will be greater than that of an
item v’ € V; ,i.e, Ty,» > Iy,o. For this purpose, we define a pair-
wise loss function based on the principle of Bayesian Personalized
Ranking (BPR) [23]:

-y > ¥

ueU oeO* veVi v eVy

log o(Fu,0 = Tu,o) + A | © 113,

(18)
where © represents all the learnable parameters and A is a nonneg-
ative parameter controlling the contribution of the regularization
term. In the experiments, we will apply Adam algorithm [16] to
optimize our model.
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Table 1: The statistics of datasets

Dataset #Users #ltems  #Interactions Avg. #sessions Avg. length Density
per user per session

Amazon Book 4,621 170,474 517,556 12 9 0.0006

Amazon Video 1,709 12,434 64,298 8 5 0.0030

Movielens-1M 5,492 3,692 970,346 29 6 0.0478

Lastfm 953 22,372 16,641,736 950 18 0.7805

4 EXPERIMENTS
4.1 Experimental Setting

4.1.1 Datasets. We conduct the experiments on four real-world
datasets whose statistics are summarized in Table 1. In this paper,
we only consider implicit feedbacks (e.g. clicks), and hence explicit
feedbacks (e.g. ratings) in datasets are simply regarded as implicit
interactions. As has mentioned before, in order to split an interac-
tion sequence into sessions, on each dataset we will investigate the
distribution of the time gaps between any two successive interac-
tions, and choose as the threshold the time gap that accounts for
the most part of the distribution. On each dataset, we randomly
select 70%of the data as training set, 10% as validation set, and the
remaining 20% as testing set, and repeat such procedure 10 times
and report the average results.

e Amazon Book Amazon Book is a dataset collected from
Amazon, which contains 517,556 ratings to 170,474 books
given by 4,621 users. By investigating the distribution of
the time gaps between any two successive interactions, we
find that most time gaps are less than 2 days. Therefore, in
Amazon Book, we split a historical interaction sequence into
sessions whenever the time interval between two successive
interactions is more than 2 days.

e Amazon Video Amazon Video is another dataset collected
from Amazon, which contains 64,298 ratings to 12,434 videos
given by 1,709 users. In Amazon Video, the sessions are
extracted using the same time gap threshold as in Amazon
Book.

e MovieLens-1M MovieLens-1M is a user-movie dataset col-
lected from MovieLens website, which contains 970,346 rat-
ings to 3,692 movies given by 5,492 users. For MovieLens-1M,
the time gap threshold is set to 2 hours with the same method
as for the Amazon datasets.

e Lastfm Lastfm is a freely-available collection of audio fea-
tures and metadata for a million contemporary popular mu-
sic tracks [3], consisting of tuples of user, timestamp, artist,
and song listened to. As Lastfm contains an overwhelming
amount of songs, which causes an expensive requirement of
huge amount of memory, we treat the artists instead of the
songs as items, with the same approach as taken by [25], and
we obtain 16,641,736 interactions of 953 users with 22,372
artists. Finally, we split an interaction sequence into ses-
sions for Lastfm using the same time gap threshold as for
MovieLens-1M.

4.1.2  Baseline Methods. We compare TLSRec with ten state-of-the-
art methods for sequential recommendation, including two RNN
based models (DREAM and II-RNN), six attention based models

217

(NARM, ANAM, SHAN, SASRec, BERT4Rec, and TiSASRec), and
two GNN based models (SURGE and RetaGNN).

DREAM [35] DREAM is an RNN based model for next bas-
ket recommendation, which not only learns a dynamic rep-
resentation for a user but also captures global sequential
features among baskets (sessions) to gain a comprehensive
understanding of users’ purchase interests and consequently
recommend items that each user most probably purchase in
the next visit.

II-RNN [25] II-RNN is a hierarchical RNN model for se-
quential recommendation, which not only models a user’s
short-term preference by an intra-session RNN layer, but
introduces an inter-session RNN layer to capture the depen-
dency between sessions as well.

NARM [17] NARM is an attention based model for session-
based recommendation, which uses a hybrid encoder with an
attention mechanism to model the user’s sequential behavior
and capture users’ intent in the current session.

ANAM [2] ANAM is an attribute-aware model for next bas-
ket (session) recommendation, which adopts an attention
mechanism to explicitly model user’s evolving preference for
items, and utilizes a hierarchical architecture to incorporate
the attribute information of items.

SHAN [34] SHAN is a sequential recommendation model
based on a two-layer hierarchical attention network, where
the first attention layer learns user long-term preferences
based on the historical purchased items, while the second
one generates user’s final representation by fusing the user’s
long-term preference and short-term preference.

SASRec [15] SASRec uses a self-attention mechanism com-
bined with position embeddings to capture the semantics
of user’s long-term preference, which can identify relevant
items by adaptively assigning weights to previous items at
each time step.

BERT4Rec [27] BERT4Rec employs a deep bidirectional
self-attention mechanism to model user behavior sequences,
with the optimization objective to predicting the random
masked items in the sequence by jointly conditioning on
their left and right context.

TiSASRec [18]: TiSASRec is a time interval aware model for
sequential recommendation, which incorporates the infor-
mation of the relative time interval between any two items
into a self-attention mechanism to weight the different items
during the learning of user preference.

SURGE [4]: SURGE is a GNN-based model which integrates
implicit feedbacks with explicit ones in long-term user be-
haviors into clusters in the graph by re-constructing loose
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Table 2: Hit@k comparison with baselines

Methods  Amazon Book Amazon Video Movielens-1M Lastfm
k=20 k=30 k=20 k=30 k=20 k=30 k=20 k=30
DREAM 0.0440 0.0609 0.0553 0.0644 0.3837 0.4713 0.7323 0.7861
II-RNN 0.0668 0.0907 0.0821 0.0966 0.4902 0.5854 0.6311 0.6864
NARM 0.0634 0.0838 0.0339 0.0449 0.4208 0.5066 0.7097 0.7585
ANAM 0.0651 0.0971 0.0819 0.1019 0.3381 0.4123 0.7287 0.7991
SHAN 0.0480 0.0632 0.0627 0.0899 0.3337 0.4237 0.5556 0.6100
SASRec 0.1209 0.1663 0.1884 0.2458 0.4476 0.5413 0.8065 0.8260
BERT4Rec 0.0902 0.1335 0.1744 0.2167 0.3917 0.4922 0.6515 0.7748
TiSASRec 0.1842 0.2356 0.2133 0.2680 0.5025 0.5850 0.7630 0.8253
SURGE 0.2219 0.3103 0.1961 0.2048 0.5077 0.5110 0.7915 0.8060
DHCN 0.1991 0.2736 0.2308 0.2780 0.5301 0.5922 0.7551 0.8180
TLSRec 0.3438 0.4161 0.2423 0.2884 0.5640 0.6522 0.8086 0.8439

item sequences into tight item-item interest graphs based
on metric learning.

e DHCN [32]: DHCN models session-based data as a hyper-
graph and captures the high-order relations among items
and the cross-session information with a dual channel hy-
pergraph convolutional network.

4.1.3  Evaluation Metrics. We choose the widely used Hit rate and
MAP (Mean Absolute Precision) to evaluate the performance of
TLSRec. Let S, and S,, be the ground truth session and the set of
the predicted top-k ranked items, and then the Hit rate and MAP
can be defined as follows:

1 ~
Hit@k = — I(|Sy NS, 0), 19
it@ WU;L,('” Wl >0) (19)
1 ZjeS NG H(Yuj < yui)+1
MAP@kz—( e R
|U| Z . ZA Yui
uEerSunSu
(20)

where |§u| =k, I(x) = 1if x is true, otherwise I(x) = 0, and yy,; is
the predicted rank of item i for user u.

4.1.4  Hyper-parameter Setting. To divide interactions into sessions,
we set the time gap threshold e to 48 hours for Amazon Book and
Amazon Video, and 2 hours for MovieLens-1M and Lastfm. To build
the training and testing instances, we set the number T of sessions
in an instance to 10, 8, 6, and 4 for Amazon Book, Amazon Video,
Movielens-1M, and Lastfm, respectively. The embedding dimen-
sionality d is set to 64 for Amazon Book, Movielens-1M, and Lastfm,
and 32 for Amazon Video. At last, the number of heads in multi-
head self-attention network in long-term preference learning layer
is set to 8 for all datasets. On all datasets, the learning rate, batch
size, and the dropout rate are set to 0.001, 128, and 0.5, respectively.
At the same time, the optimal hyper-parameters of baselines are
fine-tuned on validation sets.

4.2 Performance Comparison with Baselines

The results of the comparison with baseline methods are shown
in Tables 2 and 3. It can be seen that TLSRec outperforms the two
RNN based models, DREAM, and II-RNN, in terms of Hit@k and
MAP@k. The RNN based models often suffer from the problem
of long-term dependency, which causes they prefer to memorize
the preference more reflected by recent sessions than by distant
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Table 3: MAP@k comparison with baselines

Methods ~ Amazon Book Amazon Video Movielens-1M Lastfm
k=20 k=30 k=20 k=30 k=20 k=30 k=20 k=30
DREAM 0.0020 0.0021 0.0027 0.0028 0.0214 0.0230 0.0661 0.0769
II-RNN 0.0025 0.0035 0.0031 0.0038 0.0271 0.0311 0.0899 0.0928
NARM 0.0031 0.0033 0.0023 0.0028 0.0185 0.0214 0.0731 0.0784
ANAM 0.0021 0.0031 0.0038 0.0047 0.0184 0.0214 0.0674 0.0713
SHAN 0.0018 0.0019 0.0061 0.0066 0.0188 0.0214 0.0690 0.0700
SASRec 0.0055 0.0062 0.0145 0.0163 0.0352 0.0436 0.0892 0.0966
BERT4Rec 0.0033 0.0047 0.0092 0.0166 0.0279 0.0402 0.0755 0.0834
TiSASRec 0.0062 0.0073 0.0155 0.0172 0.0372 0.0437 0.0981 0.1046
SURGE 0.0091 0.0104 0.0096 0.0138 0.0366 0.0411 0.0905 0.1006
DHCN 0.0075 0.0776 0.0082 0.0170 0.0233 0.0392 0.0808 0.0984
TLSRec 0.0130 0.0144 0.0167 0.0175 0.0381 0.0438 0.1044 0.1097

sessions. As the recent sessions dominate the learning of user pref-
erence, the RNN based models are more susceptible to the fluctuates
of users’ short-term preference and cannot sufficiently capture the
long-term preference that is more stable. In contrast to the RNN
based models, TLSRec learns an embedding for long-term prefer-
ence by pooling local preference embeddings of sessions with a
hierarchical self-attention network, which enables TLSRec to per-
ceive the long-term dependency between sessions and smooth out
the preference fluctuates, and consequently better understand the
stable long-term preference of a user.

We also observe that TLSRec outperforms the six attention based
models. Essentially, NARM, ANAM, SASRec, and TiSASRec only
learn the short-term preference of a user by fusing the embeddings
of the recent interactions with an attention network, which lack the
knowledge about the user’s long-term preference and consequently
tend to be hindered by the fluctuates of the user’s preference. In con-
trast, TLSRec can learn not only the short-term preference but the
long-term preference as well, particularly with a hierarchical self-
attention network which makes it able to capture the dependency
between sessions. Although SHAN and BERT4Rec consider both
long-term preference and short-term preference, however it learns
the current preference by fusing them with scalar coefficients pro-
duced by an attention mechanism, which makes it unable to weight
the contributions of the two preferences at a finer granularity level
like TLSRec does.

It can be also observed that GNN based models are inferior to TL-
SRec. Although the GNN based models can capture the high-order
interactions between items among sessions, they often essentially
focus on the learning of the current session without differentiating
the impacts of the long-term and short-term preferences

Unlike the baseline methods, TLSRec uses a gate vector pro-
duced by a neural time gate based on the time distance to fuse
the long-term preference and short-term preference embeddings,
which benefits the learning of the current preference from two
perspectives. First, the contributions of the long-term preference
and short-term preference are reasonably regulated by the distance
to current time, and the shorter it is, the more proportion the short-
term preference accounts for. Second, the dimensions of the gate
vector play the role weighting the dimensions of the preference
embeddings during their fusion, which offers a finer-grained fusion.
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Table 4: Hit@k comparison with the variants

Methods Amazon Book Amazon Video Movielens-1M Lastfm
k=20 k=30 k=20 k=30 k=20 k=30 k=20 k=30
TLSRec-S 0.2741 0.3530 0.1567 0.2073 0.5111 0.6057 0.7604 0.8064
TLSRec-L 0.3034 0.3692 0.1789 0.2221 0.5466 0.6319 0.7679 0.8160
TLSRec-M 0.3039 0.3736 0.1875 0.2344 0.5611 0.6495 0.8060 0.8435
TLSRec-G+A 0.2989 0.3677 0.1702 0.2134 0.5317 0.6263 0.8053 0.8427
TLSRec-G+S  0.3070 0.3712 0.1770 0.2315 0.5534 0.6476 0.8035 0.8427
TLSRec-G+M 0.3213 0.3894 0.1965 0.2448 0.5634 0.6514 0.8065 0.8436
TLSRec 0.3438 0.4161 0.2423 0.2884 0.5640 0.6522 0.8086 0.8439
Table 5: MAP@k comparison with the variants
Methods Amazon Book Amazon Video Movielens-1M Lastfm
k=20 k=30 k=20 k=30 k=20 k=30 k=20 k=30
TLSRec-S 0.0077 0.0087 0.0119 0.0127 0.0245 0.0300 0.0928 0.0975
TLSRec-L 0.0113 0.0130 0.0130 0.0139 0.0367 0.0421 0.0822 0.0866
TLSRec-M 0.0117 0.0131 0.0159 0.0169 0.0372 0.0428 0.0962 0.1018
TLSRec-G+A 0.0110 0.0121 0.0149 0.0157 0.0360 0.0416 0.1016 0.1078
TLSRec-G+S  0.0110 0.0121 0.0159 0.0166 0.0362 0.0418 0.1016 0.1077
TLSRec-G+M 0.0119 0.0133 0.0163 0.0171 0.0376 0.0430 0.1028 0.1094
TLSRec 0.0130 0.0144 0.0167 0.0175 0.0381 0.0438 0.1044 0.1097

4.3 Ablation Experiments

Now we investigate the effectiveness of the hierarchical self-attention
network, the neural time gate, and the multi-head self-attention
mechanism in the long-term preference learning. For this purpose,
we will compare TLSRec with its variants as follows:

e TLSRec-S Compared with TLSRec, TLSRec-S removes the
self-attention network before the average pooling function
for the generation of session embeddings in short-term pref-
erence learning layer.

e TLSRec-L Symmetrically, TLSRec-L removes self-attention
network before the vanilla attention network for the genera-
tion of the long-term preference embedding.

e TLSRec-M Compared with TLSRec, TLSRec-M replaces the
multi-head self-attention network with a single-head self-
attention network in the long-term preference learning layer.

o TLSRec-G+A TLSRec-G+A is a variant of TLSRec where
the neural time gate is replaced with a pooling function
which generates the current preference embedding z,, by
averaging the long-term preference embedding and the short-
term preference embedding.

o TLSRec-G+S TLSRec-G+S is a variant of TLSRec where the
neural time gate is replaced with a self-attention mechanism.
TLSRec-G+S first generates the attentional long-term em-
bedding and short-term embedding with attention to each
other, and then generates the current preference embedding
2y, with the sum of them.

o TLSRec-G+M TLSRec-G+M is a variant of TLSRec where
the neural time gate is replaced with a multi-head attention
mechanism. TLSRec-G+M generates the current preference
embedding similarly to TLSRec-G+S, with the exception of
using the multi-head attention to generate the attentional
long-term and short-term embeddings. In TLSRec-G+M, the
number of attention heads is set to the same value in TLSRec.
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(a) User ID ’237 (b) User ID ’1492’

Figure 2: Visualization of the self-attention coefficients be-
tween sessions.

The results are shown in Tables 4 and 5. We can see that com-
pared with TLSRec, the performance of each variant significantly
declines, which verifies the effectiveness of different components
of TLSRec. Particularly, the comparison between TLSRec, TLSRec-S
and TLSRec-L shows the performance gain incurred by the pro-
posed hierarchical self-attention network, which verifies its ability
to better capture the dependency between items for the short-term
preference learning and the dependency between sessions for the
long-term preference learning. At the same time, we can also note
that TLSRec performs much better than TLSRec-M, which is due to
the ability of the multiple attention heads to enhance the long-term
preference learning by perceiving the finer-grained interactions
between dimensions of session preference embeddings. At last, we
see that compared with TLSRec-G+A, TLSRec-G+S and TLSRec-
G+M, the performance of TLSRec is remarkably improved because
of the advantages of the proposed neural time gate. First, the re-
sults demonstrate the effectiveness of using the time lag aware
gate vector to adaptively regulate the contributions of the long-
term preference and short-term preference for the learning of the
current preference. Second, the results also show that the fine-
grained fusion of the long-term and short-term embeddings with
dimension-wise weights offered by the neural time gate is superior
to the coarse fusion with manually predefined vector-wise weights.

4.4 Case Study

Now we further illustrate TLSRec’s ability to capture the interac-
tions between sessions and its ability to regulate the contributions
of long-term preference and short-term preference. For this pur-
pose, we randomly sample two users with IDs *237" and 1492’
from Movielens-1M and visualize their self-attention coefficients
between sessions and their gate vectors over different time lags in
Figures 2 and 3, respectively.

In Figures 2(a) and 2(b), one cell (S;, S;) at the row S; and column
Sj (i < j) represents the attention given by S; to Sj that is generated
by Equation (5), and the darker the color, the greater the attention.
From Figure 2 we can see that there does exist influence between
sessions, and to reveal the real preference for a session, TLSRec
assigns different attention weights to its previous sessions, by which
even the influence of early sessions can be captured.

In Figures 3(a) and 3(b), a row of the matrices is a time gate
vectors corresponding to a specific time lag, along with the average
over its dimensions that is shown as the corresponding component
in the average column. At first, we can see that the colors of the
dimensions of the same time gate vector are different from each
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Figure 3: Visualization of the time gate vectors.

other, and again the darker the color, the larger the value. This ob-
servation shows that by the time gate vector TLSRec can evaluate
the contributions of the short-term preference and long-term pref-
erence at the fine-grained dimension granularity for the learning
of the current preference, since the ith dimension g(i) of the time
gate vector and 1 — g(i) are the weights of the ith dimension of
the short-term preference embedding and the long-term preference
embedding, respectively, during the fusion in Equation (16). From
Figures 3(a) and 3(b), we can also note that the average weight over
the dimensions of a time gate vector decays with the increase of
the time lag. This result confirms our intuition that the longer the
distance between the time of the last behavior and the time when
a recommendation is made, the less the impact of the short-term
preference of a user on her/his current preference.

5 CONCLUSION

In this paper, we propose a novel model called Time Lag aware
Sequential Recommendation (TLSRec). To capture the global sta-
bility and local fluctuation of a user’s preference, TLSRec is able
to model a user’s long-term preference and short-term preference
with a hierarchical self-attention network. Meanwhile, due to the
neural time gate, TLSRec can fulfill a fusion of the long-term and
short-term preferences with a time lag sensitive regulation at the
aspect level for the learning of a user’s current preference. At last,
the extensive experiments conducted on real datasets demonstrate
the effectiveness of TLSRec.
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