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Abstract. Recommender systems use users’ historical interactions to
learn their preferences and deliver personalized recommendations from
a vast array of candidate items. Current recommender systems primar-
ily rely on the assumption that the training and testing datasets have
identical distributions, which may not hold true in reality. In fact, the
distribution shift between training and testing datasets often occurs as a
result of the evolution of user attributes, which degrades the performance
of the conventional recommender systems because they fail in Out-of-
Distribution (OOD) generalization, particularly in situations of data
sparsity. This study delves deeply into the challenge of OOD generaliza-
tion and proposes a novel model called Cross-Domain Causal Preference
Learning for Out-of-Distribution Recommendation (CDCOR), which in-
volves employing a domain adversarial network to uncover users’ domain-
shared preferences and utilizing a causal structure learner to capture
causal invariance to deal with the OOD problem. Through extensive
experiments on two real-world datasets, we validate the remarkable per-
formance of our model in handling diverse scenarios of data sparsity
and out-of-distribution environments. Furthermore, our approach sur-
passes the benchmark models, showcasing outstanding capabilities in
out-of-distribution generalization. The code and datasets are available
at: https://github.com/Rexhaha/CDCOR.

Keywords: Out-of-Distribution · Cross-Domain Recommendation ·
Causal Inference · Adversarial Training

1 Introduction

Recommender systems aim to alleviate the problem of information overload-
ing with the personalized preference learned from the historical interactions of
users. Existing approaches commonly assume an identical distribution during
training and testing phases, which may not hold true in reality. In fact, the dis-
tribution of user preferences frequently shifts over time as result of the changes
of user attributes. For example, the food preference of the user while travel-
ing shown in Fig. 1 changes from burgers to wine due to increased income.
The user preferences learned from outdated interaction data and user attributes
can lead to inaccurate recommendations, which can negatively impact the user

https://github.com/Rexhaha/CDCOR
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experience. Consequently, improving recommender systems performance in Out-
of-Distribution (OOD) environments has emerged as a pressing problem [9].

historical interactions
Income 

increases

prediction

historical interactions
prediction

Fig. 1. Example of OOD recommendation.

There has been limited research on OOD generalization in recommender
systems. Some existing approaches address the OOD problem in recommender
systems as a debiasing issue. DICE [27] divides the factors of users interact with
items into two parts: interest and conformity, and makes each embedding capture
only one cause by training with cause-specific data. DCCL [24] incorporates item
popularity as a weight within the InfoNCE to mitigate popularity bias. While
these methods effectively address bias, they do not explicitly consider situations
that are more common in the real world, such as changes in user attributes.

Some approaches tackle the issue of changes in user attributes by employ-
ing a causal inference perspective [5,16,17]. Since the causal structure reflecting
the user preferences generation process can be kept invariant in the data dis-
tribution shift, recommender systems can obtain the ability to capture the user
preferences generation process which is independent of the data distribution by
learning causal structure. COR [16] considers the changes of user attributes as
an intervention, and OOD recommendations as the probabilistic inference of
interactions following the intervention. However, this approach relies on an ar-
tificial designation of causality, which leads to a strong correlation between the
performance of the model and the prior knowledge of the expert. CausPref [5]
learns the causal structure from the data via a directed acyclic constraint, which
extends the use of causal inference-based recommender systems. However, chal-
lenges of learning causal structure from data still remain:

– Data sparsity: data sparsity makes recommender systems difficult to learn
the correct causal structure. On the one hand, data sparsity increases the
risk of model overfitting, and on the other hand, data sparsity may lead to
confusion between causality and correlation.

– Explicit attributes are difficult to obtain: learning causal structure
from data requires the dataset to contain explicit attributes of user and
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item. However, obtaining such attributes can be problematic due to privacy
restrictions imposed by individual platforms, which leads to the failure of
the method. Even though we could encode the user IDs as latent attributes,
this is affected by outdated interactions and requires dense data to encode
correctly.

To tackle these problems, we propose a novel cross-domain recommendation
model called Cross-Domain Causal Preference Learning for Out-of-Distribution
Recommendation (CDCOR). The main idea of CDCOR is to utilize the data-
rich source domain to help the model to learn the causal relationship between
user attributes and user preferences in data-sparse target domain, which ensures
that the user latent attributes be encoded correctly. In this paper, we assume
that the source and target domains share users, which is the most common sce-
nario in cross-domain recommendation. These users act as a bridge between the
two domains, allowing knowledge from the source domain transfer to the target
domain in order to help the model learns the causal structure and encodes cor-
rect user latent attributes in target domain. However, learning causal structrue
from different domains is not easy due to the following challenges: 1) discovering
the common parts of causality across different domains poses significant obsta-
cles; 2) effectively utilizing the common parts of causality to improve the OOD
recommendation performance of the model in target domain presents another
challenge.

To address the above challenges, we design a domain-shared preference en-
coder to extract user’s domain-shared preferences from their latent arrtibutes.
Through an adversarial training process of the domain-shared preference encoder
with the domain discriminator, the property that domain-shared preferences
are independent of the domain is guaranteed. Then we use a Directed Acyclic
Graph (DAG) learner to model causal structure. The causal structure learned
from domain-shared preferences is also domain-shared, so that the knowledge
of the source domain can be used to help improve the OOD recommendation
performance of the model in the target domain. To ensure the distinctiveness
of user preferences across domains, CDCOR incorporates a user domain-specific
preference encoder in each domain, allowing for the capturing of domain-specific
preferences. The main contributions of this paper can be summarized as follows:

– We propose a novel model called Cross-Domain Causal Preference Learning
for Out-of-Distribution Recommendation (CDCOR), which uses source do-
main knowledge to help the model to improve their OOD recommendation
performance in target domain. To our best knowledge, this work is the first
recommendation model that uses cross-domain knowledge to solve the OOD
problem.

– We extend causal structure learning from explicit attributes to latent at-
tributes, enriching the usage scenarios of causal inference-based recommender
systems.

– We conduct extensive experiments to demonstrate the effectiveness of our
approach in dealing with various OOD scenarios.
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2 Preliminaries

Problem Definition. In this paper, we assume that the input data take form
of implicit feedback such as click records. We consider two domains, a source
domainDs which has rich data, and a target doaminDt which only has few data.
The users are denoted as U = {u1, u2, ..., um}. The item sets from the source
and target domains are Is = {is1, is2, ..., isns} and It = {it1, it2, ..., itnt} respectively,
with the corresponding interaction matrices given by Y s and Y t. Each element
ysui ∈ {0, 1} and ytui ∈ {0, 1} in these two matrices indicates whether there is an
interaction between user u and item i. Then the target task is the single-target
recommendation, where we predict ŷtui(u ∈ U, i ∈ It), via utilizing the knowledge
from the Y s and Y t.

Out-of-Distribution Recommendation. Given the training dataset Dtr and
testing dataset Dte, where the samples satisfy the training distribution Ptr(U, I)
and testing distribution Pte(U, I) respectively. In OOD recommendation, the
testing distribution may deviate from training distribution, that is Ptr(U, I) 6=
Pte(U, I). The goal of OOD recommendation is to train a recommendation model
from training distribution Ptr(U, I) to predict the probability of user-item inter-
actions in the testing distribution Pte(U, I).

3 Proposed Method

Fig. 2 shows the architecture of CDCOR, it is an end-to-end feed-forward neu-
ral network that contains three components, with inputs of observed user-item
interaction records and outputs of interaction predictions. These three kinds of
components include domain-specific module, domain-shared module and causal
structure learning module.

The domain-specific module consists of two parts: the source domain part
and the target domain part, they are responsible for embedding user ID and
item ID into real-valued vectors of domain-specific latent features, and make
the final interaction prediction. The goal of the domain-shared module is to
extract users’ domain-shared preferences through domain adversarial training.
The causal structure learning module is designed to model the causal structure
in order to get the causal invariant preferences of the user.

3.1 Domain-Specific Embedding

Since the notations in the source domain are similar to the target domain, for
the sake of descriptive brevity, we use the target domain as an illustrative exam-
ple in the subsequent description. Firstly, we map user IDs and item IDs into a
high-dimensional space to facilitate learning causal structure and similarity cal-
culation. In both domains, each interaction record contain a user ID and a item
ID, we use one-hot vectors to encode the sparse user and item representations
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Fig. 2. The Architecture of CDCOR. The source domain is in yellow, the target domain
is in blue, and the domain-shared module and causal structure learning module is in
green.

as ou ∈ {0, 1}m and oti ∈ {0, 1}n
t

. Specifically, for items, we map their one-hot
vectors into latent embeddings it ∈ Rk with a item embedding encoder:

it = Eti (o
t
i; θ

t
i) =W

t
i o

t
i ∈ Rk (1)

where W t
i ∈ Rk×nt

is a learnable mapping matrix. And for users, as mentioned
earlier, we encode the user’s one-hot vectors ou ∈ {0, 1}m into latent attribute
vectors for generate domain-specific user preference and causal learning:

utatt = Etatt(ou; θ
t
att) =W

t
attou ∈ Rk (2)

Similar to item, we use user domain-specific preference encoder to convert users’
latent attribute vectors into user domain-specific preference for prediction:

ut = Etu(u
t
att; θ

t
u) =W

t
uu

t
att ∈ Rk (3)

where W t
att ∈ Rk×m and W t

u ∈ Rk×k are learnable mapping matrices.

3.2 Domain-Shared Embedding

Learning user domain-shared preferences presents a challenge because user’s
common preferences are similar but not identical across domains. For exam-
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ple, a user may care more about the plot of a novel, but care more about special
effects of a movie. To address this problem, we employ domain adversarial train-
ing method [2], which is widely used to align different domains, for the purpose
of extracting users’ domain-shared preferences. This part is trained by data from
target and source domains. Rich source domain data can help model training to
get better parameters, and model performance in the target domain benefits as
a result. We feed user latent attribute vectors uatt from both domains into the
encoder Ec to generate user domain-shared preference embeddings:

uc = Ec(uatt; θ
c) = g(W c

uuatt) ∈ Rk (4)

where W c
u ∈ Rk×k, g is the activation function set as ReLU.

To ensure uc to be domain-shared, we also employ a domain discriminator
D to identify which domain the user domain-shared preference embeddings are
coming from:

l̂ = D(uc; θd) = σ(W duc) ∈ R2 (5)

where l̂ is the domain label, which is a 2-dimensional vector, where the dimension
0 stands for the generated probabilities for the source domain and 1 stands for
the target domain. σ presents the Sigmoid function. The loss of domain-shared
part is defined as:

Lc(θ
d, θc) = −

N∑
n=1

ln log(l̂n) + (1− ln) log(1− l̂n) (6)

If the discriminator can’t distinguish which domain the embeddings are com-
ing from, then the embeddings can be viewed as domain-shared. In order to
obtain domain-shared embeddings, the encoder and the discriminator play a
min-max game. On the one hand, the discriminator needs to minimise the clas-
sification loss to ensure that it can distinguish the source of the embeddings,
and on the other hand, the encoder needs to maximise the loss to confuse the
discriminator. This strategic interplay results in the extraction of domain-shared
preferences.

3.3 Causal Structure Learning

In this section, we will describe how we use DAG to learn causal structure
between user attributes and user preferences.

Causal structure learning is the problem of learning graph G using user-
item interaction records. In this work, we encode a graph G with 2k nodes as
a weighted adjacency matrix A ∈ R2k×2k, Aij representing the causal effect of
node i on node j. Each node represents one dimension in the embedding of user
latent attributes or user preferences. We can formulate the Structural Causal
Model (SCM) as:

H = ATH + ε, ε ∼ N (0, I) (7)

where H = uatt||uc ∈ R2k, || is concatenate operation. Equation (7) describes
how children nodes are generated by their parental nodes. When Equation (7)
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holds, the graph G correctly expresses the causal relationship between user latent
attributes and user preferences. There are two benefits of using latent attributes
for causal learning: 1) the model does not rely on the explicit attributes of the
user, so there are no privacy issues that would result in limiting the use of the
model; 2) the model can mine potential user attributes from the data, allowing
us to model causal structures more accurately. We can achieve causal structure
learning by minimise the following loss function:

Lrec =
1

N

N∑
i=1

||Hi −ATHi||22 (8)

We know that the causal graph can be formulated as a Bayesian network, so
we need a constraint [26] to ensure that the adjacency matrix A is acyclic:

Tr(eA�A)− k = 0 (9)

where � denotes the elementwise product. In summary, the loss of the causal
part as

L̃cau(θ
cau) =Lrec + γ1Ldag + γ2||A||1

=
1

N

N∑
i=1

||Hi −ATHi||22 + γ1(Tr(e
A�A)− k) + γ2||A||1

(10)

Due to the special property of recommender systems, we add two additional
constraints similar to [5]:

– All paths can only from user attribute nodes to user preference nodes.
– User preference nodes can’t be the root nodes.

The above two constraints are consistent with the intuition that user prefer-
ences are generated by user attributes. In the end, we get the total loss of the
causal part as:

Lcau(θ
cau) =Lrec + γ1Ldag + γ2La2p + γ3Lpnr + γ4||A||1

=
1

N

N∑
i=1

||Hi −ATHi||22 + γ1(Tr(e
A�A)− k)

+ γ2||A[k+1:2k,1:k]||1 + γ3

2k∑
i=k+1

− log ||A[:,i]||1 + γ4||A||1

(11)

where La2p forces edges in A only from user attribute nodes to user preference
nodes, and Lpnr ensure that user preference nodes are not the root nodes.

Note that after training, we only need to input uatt, while uc is replaced by
the zero vector 0 ∈ Rk, and in the output Ĥ of the causal module we intercept
the posterior k-dimensional vector as the final causal invariant preference ucau.
Since we modelled the process of generating user preferences with A, we can
directly infer user preferences from user attributes for correct out-of-distribution
recommendations.
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3.4 Prediction and Training

After the above steps, we design a predictor f for each domain to predict the in-
teraction probability. We first obtain the user domain-specific preference embed-
ding ut and domain-shared causal invariant preference embedding ucau. Then,
we concatenate them and feed it into a fusion layer ht to get the final user
preference embedding uct. The fusion layer acts as a attention layer, which can
retain both the user domain-specific preferences and domain-shared preferences,
and balance the importance between them. Finally, we feed it with the item em-
beddings it into predictor, the interaction probability are calculated as follows:

ŷtui = f t(ht(ut||ucau)� it) =W t
f (u

ct � it) ∈ R2 (12)

where W t
f ∈ R2×k.

Considering the binary property of implicit feedback, we use cross-entropy
loss to train this model:

Lt(θ
t) = −

∑
ytui log(ŷ

t
ui) + (1− ytui) log(1− ŷtui) (13)

Then we get the overall loss function:

L(θt, θs, θd, θc, θcau) =Lt(θ
t) + λ1Ls(θ

s) + λ2Lc(θ
d, θc)

+ λ3Lcau(θ
cau) + λ4||θ||2

(14)

where θ represents all trainable parameters and λ are used to adjust the im-
portance of each term. Then the optimization objective can be expressed as:

(θ̂t, θ̂s, θ̂d, θ̂cau) = argmin
θt,θs,θd,θcau

L(θt, θs, θd, θc, θcau)

θ̂c = argmax
θc

L(θt, θs, θd, θc, θcau)
(15)

We use gradient reversal layer (GRL) [2] to optimise our loss function. It
plays different roles in forward and backward propagation. It acts as an identity
function in forward propagation and inverts the gradient in backward propa-
gation, so it can be optimise the parameters to make the discriminator more
accurate, while the gradient reversal leads to optimisation of the preference en-
coder in the opposite direction, resulting in the discriminator having difficulty
in distinguishing which domain the preferences are come from. The GRL layer
can be described as:

R(x) = x (forward)
dR(x)/dx = −λI (backward)

(16)

where I is identity martix. The GRL is placed before the discriminator after the
preference encoder. Therefore, we get a new optimization objective as:

(θ̂t, θ̂s, θ̂d, θ̂c, θ̂cau) = argmin
θt,θs,θd,θc,θcau

L(θt, θs, θd, θc, θcau) (17)

Consequently, the model parameters can be optimized by SGD-like algo-
rithms.
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4 Experiments

This section presents the results of the experiment on two real-world datasets,
and we aim to answer the following questions:

– RQ1: How does the proposed model CDCOR perform compared with state-
of-the-art baselines?

– RQ2: How does the cross-domain module and causal learning module affect
the performance?

– RQ3: How robust is CDCOR to varying degrees of distribution shift?
– RQ4: Can our proposed model solve the data sparsity problem in OOD

recommendation?

4.1 Experimental Setup

Datasets. We use two widely used cross-domain recommendation datasets
Douban1 and Tenrec2. Table 1 shows the statistics of the two datasets. For
Douban dataset, we use the movie domain, which has rich interaction records
as the source domain and the book domain is the target domain, which has
few interaction records. This dataset contains user IDs, item IDs and ratings.

Table 1. The statistics of the datasets

Dataset Domain #Users #Items #Interactions

Douban
movie(s)

2106
9555 969937

book(t) 6777 95974

Tenrec
video(s)

2151
37041 247942

article(t) 2869 37641

And for Tenrec, the source domain is the video domain and the article domain
is used as the target domain. It contains not only the user IDs, item IDs and
ratings, but also the user’s gender. Note that the ratings are explicit feedback,
we transformed it into implicit feedback, where the interactions with ratings ≥
4 as positive samples.

On both datasets we first perform experiments with independent and iden-
tically distributed (IID) scenarios, where both the training and testing data are
obtained by random sampling. Then we set up two OOD settings as flollow: 1)
User Degree Bias: Active users in the platform interact with a wide range of
different types of item, the active users will have smoother feature embeddings,
which will lead to incorrect recommendation result. In this setting, we randomly
sample training data from raw dataset, and sample users mainly with the upper
1 https://github.com/FengZhu-Joey/GA-DTCDR
2 https://github.com/yuangh-x/2022-NIPS-Tenrec

https://github.com/FengZhu-Joey/GA-DTCDR
https://github.com/yuangh-x/2022-NIPS-Tenrec
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degree for testing data. 2) User Attribute Bias: Attributes of users change
over time, for example, the user’s income will increase. In this setting, we divide
the dataset into two parts according to user’s gender, then sample from raw
dataset for training, and adjust the different ratios of data from two parts for
test.

The user degree bias setting (OOD#1) is experimented on both datasets,
and the user attribute bias setting (OOD#2) is only performed on the Tenrec
dataset. In all settings, the proportion of training, validation and testing data
are set as 8:1:1.

Baselines. We compare our CDCOR with eight state-of-the-art recommenda-
tion methods: 1) Traditional recommendations: GMF [3], IPS [13]. 2) Cross-
domain recommendations: DARec [20], HMRec [8], PTUPCDR [30]. 3) Disen-
tangling based OOD recommendations: DICE [27], DCCL [24]. 4) Causal based
OOD recommendation: CausPref [5].

Metrics and Implementation Details. In this paper, we adopt Hit Ratio
(HR) and Normalized Discounted Cumulative Gain (NDCG) as the metrics,
which are widely used in recommendation senarios. The HR@k is the ratio of
the test item appears in the top-k list, while the NDCG@k consider the precision
position of the hit, with higher scores for higher positions. We use the leave-one-
out evaluate strategy [4, 11], which sample 99 negative items for each positive
item in the test set.

We set the embedding dimensionality as 16, learning rate as 0.01 for all
scenarios. We design two hidden layers for domain discriminator, and one hidden
layer for other MLP. Then we set the trade-off parameters λ1, λ2, λ3 and λ4 as 1,
0.5, 1, 0.00001, respectively. Hyperparameters of all baselines are set to optimal
values. Finally, we report the average result of five random times.

4.2 Performance Comparison (RQ1 & RQ2)

Table 2, 3 and 4 show the results on two datasets including two IID tests and
three OOD tests results. The numbers in parentheses represent the percentage of
performance degradation of the model in the OOD tests. We have the following
observations: 1) The performance of all the models have a significant degradation
in the OOD test, which is due to the shift of the data distribution under the OOD
environment. 2) CDCOR has a comparable performance with the SOTA method
in the IID test, and has the best performance in the OOD test. It is worth not-
ing that CDCOR has the least performance degradation under the OOD test,
it verifies that CDCOR has a good generalisation performance when facing the
distribution shift, which indicates that correctly capturing causal invariance in
the data distribution is beneficial for improving the performance of OOD rec-
ommendations in recommender systems. 3) Compared with CausPref, CDCOR
has a huge advantage in both IID and OOD tests, suggesting that information
from other domains not only improves the model recommendation performance,
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Table 2. Performance comparison on Douban dataset

IID/OOD IID OOD#1
Metric H@5 H@10 N@5 N@10 H@5 H@10 N@5 N@10

GMF 0.2142 0.3209 0.1448 0.1791 0.1750(-18.29%) 0.2793(-12.99%) 0.1156(-20.18%) 0.1491(-16.77%)
(±0.0040) (±0.0070) (±0.0036) (±0.0043) (±0.0079) (±0.0064) (±0.0051) (±0.0038)

IPS 0.2139 0.3197 0.1452 0.1792 0.1833(-14.28%) 0.2898(-9.36%) 0.1190(-18.08%) 0.1530(-14.62%)
(±0.0032) (±0.0041) (±0.0027) (±0.0030) (±0.0060) (±0.0043) (±0.0055) (±0.0045)

DICE 0.2467 0.3667 0.1685 0.2073 0.2089(-15.31%) 0.3127(-14.71%) 0.1391(-17.49%) 0.1724(-16.82%)
(±0.0090) (±0.0054) (±0.0060) (±0.0042) (±0.0059) (±0.0037) (±0.0045) (±0.0042)

DCCL 0.2641 0.3850 0.1797 0.2186 0.2265(-14.27%) 0.3516(-8.68%) 0.1461(-18.73%) 0.1863(-14.76%)
(±0.0160) (±0.0145) (±0.0137) (±0.0131) (±0.0047) (±0.0044) (±0.0024) (±0.0021)

DARec 0.2373 0.3437 0.1646 0.1988 0.1968(-17.05%) 0.3014(-12.31%) 0.1329(-19.24%) 0.1665(-16.23%)
(±0.0039) (±0.0039) (±0.0031) (±0.0027) (±0.0067) (±0.0028) (±0.0046) (±0.0026)

HMRec 0.2408 0.3418 0.1666 0.1991 0.2038(-15.35%) 0.3060(-10.46%) 0.1405(-15.66%) 0.1733(-12.95%)
(±0.0073) (±0.0057) (±0.0052) (±0.0046) (±0.0113) (±0.0090) (±0.0080) (±0.0073)

PTUPCDR 0.2355 0.3444 0.1612 0.1963 0.2048(-13.04%) 0.3096(-10.10%) 0.1370(-15.01%) 0.1708(-13.00%)
(±0.0038) (±0.0029) (±0.0022) (±0.0015) (±0.0070) (±0.0088) (±0.0050) (±0.0052)

CausPref 0.2237 0.3282 0.1542 0.1878 0.1853(-17.18%) 0.2894(-11.80%) 0.1255(-18.62%) 0.1589(-15.41%)
(±0.0032) (±0.0010) (±0.0033) (±0.0025) (±0.0058) (±0.0052) (±0.0028) (±0.0020)

CDCOR 0.2581 0.3782 0.1779 0.2166 0.2362(-8.51%) 0.3574(-5.50%) 0.1582(-11.05%) 0.1973(-8.90%)
(±0.0035) (±0.0027) (±0.0036) (±0.0030) (±0.0074) (±0.0047) (±0.0056) (±0.0043)

w/o causal 0.2560 0.3748 0.1750 0.2132 0.2215(-13.46%) 0.3388(-9.61%) 0.1467(-16.15%) 0.1844(-13.53%)
(±0.0046) (±0.0053) (±0.0046) (±0.0049) (±0.0070) (±0.0046) (±0.0067) (±0.0056)

w/o source 0.2542 0.3697 0.1744 0.2116 0.2246(-11.65%) 0.3375(-8.71%) 0.1493(-14.35%) 0.1860(-12.09%)
(±0.0049) (±0.0043) (±0.0025) (±0.0025) (±0.0093) (±0.0077) (±0.0071) (±0.0063)

but also helps the model to learn the correct causal structure. 4) IPS has been
shown to be useful in some of these cases, while not in others due to the fact
that IPS needs to rely on unbiased data that is not always available. 5) Three
cross-domain based recommendation methods PTUPCDR, HMRec and DARec
perform close to each other and outperform traditional single-domain recommen-
dation methods, but still underperform in OOD tests, suggesting that relying
only on cross-domain data is difficult to improve model performance in OOD
environments. 6) DICE and DCCL two methods based on the disentangling of
embedding have good performance in both IID and OOD tests, but the perfor-
mance drops more in OOD test than CDCOR, indicating that the decoupling of
the factors for user interactions is helpful for recommendation, but can only be
used for a specific distribution shift, which may require more fine-grained disen-
tangling when faces with more complex distribution shift environments. 7) The
two ablation variants w/o causal (removed the causal inference part) and w/o
source (removed the source part) do not perform as well as CDCOR in both the
IID and OOD tests. Their performance drop is more noticeable in the OOD test,
which shows that correctly capturing causal invariance and the knowledge from
other domains both play an important role in improving the out-of-distribution
generalisation performance of recommender systems.

4.3 Robustness experiments (RQ3)

We test the stability of each model under varying levels of distribution shift. In
user degree bias setting, we fix the ratio of the two types user in the training
dataset to be 4:6 and adjusted it to 7:3 in the testing dataset. In user attribute
bias setting, this ratio is 8:2 and 2:8 in the training and test sets, respectively.

Fig. 3 reports the experiment results. We observe that all methods show a
decrease when facing the distribution shift. In the IID case, CDCOR is compa-
rable to the best performing method. The advantage of CDCOR becomes more
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Table 3. Performance comparison on Tenrec dataset (IID)

IID/OOD IID

Metric H@5 H@10 N@5 N@10

GMF 0.4422 0.6238 0.3077 0.3664
(±0.0089) (±0.0068) (±0.0074) (±0.0063)

IPS 0.4425 0.6292 0.3074 0.3678
(±0.0044) (±0.0058) (±0.0028) (±0.0019)

DICE 0.4698 0.6993 0.3299 0.4043
(±0.0098) (±0.0102) (±0.0089) (±0.0088)

DCCL 0.4926 0.6536 0.3475 0.3997
(±0.0041) (±0.0036) (±0.0027) (±0.0028)

DARec 0.4746 0.6615 0.3302 0.3905
(±0.0044) (±0.0091) (±0.0034) (±0.0054)

HMRec 0.4610 0.6483 0.3182 0.3787
(±0.0105) (±0.0096) (±0.0116) (±0.0101)

PTUPCDR 0.4670 0.6531 0.3199 0.3800
(±0.0059) (±0.0030) (±0.0065) (±0.0047)

CausPref 0.4386 0.6260 0.3012 0.3618
(±0.0078) (±0.0024) (±0.0052) (±0.0034)

CDCOR 0.4967 0.6878 0.3452 0.4070
(±0.0083) (±0.0065) (±0.0044) (±0.0031)

w/o causal 0.4717 0.6668 0.3243 0.3873
(±0.0097) (±0.0102) (±0.0080) (±0.0079)

w/o source 0.4867 0.6718 0.3385 0.3983
(±0.0069) (±0.0054) (±0.0068) (±0.0050)

Table 4. Performance comparison on Tenrec dataset (OOD)

IID/OOD OOD#1 OOD#2

Metric H@5 H@10 N@5 N@10 H@5 H@10 N@5 N@10

GMF 0.3671(-16.99%) 0.5444(-12.72%) 0.2446(-20.51%) 0.3017(-17.64%) 0.4050(-8.43%) 0.5888(-5.61%) 0.2828(-8.10%) 0.3421(-6.63%)
(±0.0101) (±0.0136) (±0.0075) (±0.0074) (±0.0144) (±0.0060) (±0.0123) (±0.0092)

IPS 0.3721(-15.91%) 0.5453(-13.34%) 0.2497(-18.76%) 0.3057(-16.88%) 0.4118(-6.94%) 0.5816(-7.56%) 0.2859(-7.00%) 0.3406(-7.41%)
(±0.0083) (±0.0031) (±0.0065) (±0.0044) (±0.0209) (±0.0059) (±0.0142) (±0.0093)

DICE 0.4060(-13.58%) 0.6066(-13.26%) 0.2736(-17.05%) 0.3389(-16.18%) 0.4514(-3.39%) 0.6601(-5.60%) 0.3180(-3.60%) 0.3856(-4.63%)
(±0.0144) (±0.0126) (±0.0128) (±0.0121) (±0.0193) (±0.0082) (±0.0165) (±0.0122)

DCCL 0.4196(-14.81%) 0.5927(-9.32%) 0.2828(-18.62%) 0.3382(-15.41%) 0.4792(-2.71%) 0.6452(-1.28%) 0.3365(-3.16%) 0.3902(-2.38%)
(±0.0113) (±0.0082) (±0.0095) (±0.0057) (±0.0099) (±0.0160) (±0.0059) (±0.0073)

DARec 0.3886(-18.11%) 0.5644(-14.68%) 0.2643(-19.95%) 0.3207(-17.89%) 0.4263(-10.19%) 0.6289(-4.93%) 0.2957(-10.43%) 0.3607(-7.64%)
(±0.0165) (±0.0133) (±0.0128) (±0.0119) (±0.0100) (±0.0032) (±0.0066) (±0.0043)

HMRec 0.3950(-14.32%) 0.5781(-10.83%) 0.2661(-16.35%) 0.3252(-14.13%) 0.4291(-6.92%) 0.6143(-5.24%) 0.2918(-8.29%) 0.3516(-7.15%)
(±0.0197) (±0.0110) (±0.0152) (±0.0115) (±0.0202) (±0.0181) (±0.0153) (±0.0148)

PTUPCDR 0.3860(-17.35%) 0.5771(-11.63%) 0.2628(-17.87%) 0.3226(-15.11%) 0.4131(-11.55%) 0.5998(-8.16%) 0.2884(-9.87%) 0.3487(-8.24%)
(±0.0153) (±0.0115) (±0.0046) (±0.0054) (±0.0031) (±0.0077) (±0.0071) (±0.0064)

CausPref 0.3256(-25.75%) 0.4984(-20.39%) 0.2179(-27.65%) 0.2736(-24.39%) 0.3836(-12.54%) 0.5600(-10.55%) 0.2639(-12.40%) 0.3206(-11.40%)
(±0.0319) (±0.0446) (±0.0283) (±0.0300) (±0.0113) (±0.0093) (±0.0062) (±0.0041)

CDCOR 0.4357(-12.27%) 0.6310(-8.25%) 0.2954(-14.44%) 0.3588(-11.84%) 0.4880(-1.74%) 0.6841(-0.54%) 0.3363(-2.57%) 0.3997(-1.77%)
(±0.0111) (±0.0117) (±0.0085) (±0.0088) (±0.0073) (±0.0060) (±0.0047) (±0.0042)

w/o causal 0.3991(-15.39%) 0.5793(-13.13%) 0.2619(-19.24%) 0.3206(-17.23%) 0.4561(-3.29%) 0.6476(-2.89%) 0.3089(-4.73%) 0.3704(-4.36%)
(±0.0137) (±0.0138) (±0.0058) (±0.0052) (±0.0194) (±0.0067) (±0.0134) (±0.0088)

w/o source 0.4111(-15.52%) 0.6026(-10.30%) 0.2764(-18.33%) 0.3380(-15.13%) 0.4757(-2.25%) 0.6637(-1.20%) 0.3252(-3.92%) 0.3858(-3.12%)
(±0.0096) (±0.0079) (±0.0089) (±0.0082) (±0.0127) (±0.0063) (±0.0082) (±0.0037)
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Fig. 3. Robustness experiments. (a) OOD#1 test in Douban. (b) OOD#1 test in Ten-
rec. (c) OOD#2 test in Tenrec.
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and more obvious as the distribution shift increases, which verifies that CDCOR
possesses better stability and stronger robustness in various OOD environments.

4.4 Performance Against Sparsity (RQ4)

We test the ability of each method to against sparsity in two IID settings and
three OOD settings on two datasets. The horizontal axis indicates how much data
was used for training. We can see from Fig. 4 and Fig. 5 that the performance of
all methods decrease as the sparsity of the data increases, and decrease faster in
OOD environments. In the vast majority of cases, CDCOR outperforms the other
methods, and the lower the density, the more obvious the performance advantage
of CDCOR over other methods, especially in OOD tests. The results show that
CDCOR is able to learn the correct causal relationship in the case of sparse data
in the target domain, thus improving OOD recommendation ability. This also
verifies that data sparsity does affect the model to learn causal relationships.
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Fig. 4. Performance against sparsity in Tenrec. (a) IID test. (b) OOD#1 test. (c)
OOD#2 test.
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Fig. 5. Performance against sparsity in Douban. (a) IID test. (b) OOD#1 test
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5 Related Work

Causal Recommendation. Causal inference has many applications in recom-
mender systems, and these works are mainly used to remove the bias [1, 18,23].
Inverse propensity weighting (IPW) is a widely used method and achieves ex-
cellent performance. For example, RelMF [12] treats the probability of an item
being exposed to a user as a propensity score and proposes an unbiased estima-
tor of the ideal loss function which is optimized by clipped propensity score to
eliminate the exposure bias.

Some works focuse on beyond-accuracy objectives, such as explanability [14,
19] and fairness [22]. For instance, Li et al. [7] causally models the recommender
systems in terms of sensitive and non-sensitive features, and introduces adversar-
ial learning to remove information about sensitive features from user embeddings
to mitigate unfairness. However, there is still limited existing works on causal
inference-based recommender systems for OOD problems.

Out-of-Distribution Recommendation. User preference may shift over time
due to the changes of user attributes, which is frequent in the real-world sce-
narios. Recommender systems that ignore these changes can lead to inappro-
priate recommendations. Existing works that deal with user preference shifts
mainly fall into two categories. 1) Decoupled recommendations enhance robust-
ness in the distribution shift scenario by learning decoupled user preference em-
beddings [24, 27]. However, previous studies ignore changes in user attributes
and only address specific OOD situations, can’t widely use. 2) Causal inference
based methods aims at modelling causal invariance [5, 16]. These methods can
handle more variable OOD scenarios, but they require explicit attributes and
dense datasets. Our propose method can overcome these shortcomings by utiliz-
ing cross-domain knowledge.

Cross-domain Recommendation. Cross-domain recommendation is a com-
mon approach used to address the issue of data sparsity in recommender sys-
tems [10, 25]. The main idea of cross-domain recommendation is to transfer
knowledge from source domain to target domain. Deep learning has received a
lot of attention in recent years, and many researchers have adopted it into cross-
domain approaches [6,28]. The main idea in deep learning methods is to extract
latent factors that are common to different domains through deep neural net-
works. For instance, EMCDR [10] proposes the use of a multi-layer perceptron to
capture cross-domain nonlinear mapping functions for user or item embeddings.

Inspired by the fact that adversarial training can be used to align two do-
mains [2, 15], many cross-domain recommender models based on adversarial
training have been proposed in recent years. DARec [20] draws inspiration from
domain adaptation and introduces a deep domain adaptation model capable of
extracting and transferring common rating patterns from rating matrices. We
extend the application of cross-domain recommendations by combining cross-
domain methods with causal inference.
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6 Conclusion

In this paper, we propose a novel model called Cross-Domain Causal Prefer-
ence Learning for Out-of-Distribution Recommendation (CDCOR). Unlike con-
ventional causal inference-based recommendation models, our proposed model
leverages knowledge from other domains to not only mitigate the effects of data
sparsity to help the model learn the correct causal relationship in target do-
main, but also to mitigate the effects of outdated interaction records and extend
causal structure learning to the latent attribute level. At last, experiments in
multiple scenarios demonstrate the superior performance of CDCOR in out-of-
distribution recommendation.
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