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Abstract—The purpose of diffusion history inference is to re-
construct the missing traces of information diffusion according
to incomplete observations. Existing methods, however, often
focus only on single diffusion trace, while in a real-world social
network, there often coexist multiple information diffusions. In
this paper, we propose a novel approach called Collaborative
Inference Model (CIM) for the problem of the inference of
coexisting information diffusions. CIM can holistically model
multiple information diffusions without any prior assumption
of diffusion models, and collaboratively infer the histories of the
coexisting information diffusions via low-rank approximation
with a fusion of heterogeneous constraints generated from ad-
ditional data sources. We also propose an optimized algorithm
called Time Window based Parallel Decomposition Algorithm
(TWPDA) to speed up the inference without compromise on the
accuracy. Extensive experiments are conducted on real-world
datasets to verify the effectiveness and efficiency of CIM and
TWPDA.

Keywords-Social network, Information diffusion, Sparse ten-
sor approximation

I. INTRODUCTION

The purpose of diffusion history inference is to recon-

struct the missing information diffusion histories according

to incomplete observations, which plays an important role

in many applications [1]. For example, we are not likely

to identify a rumor propagation over a network unless a

significant number of users who transmitted it are noticed.

In this case, it is essential to learn the diffusion history

of the rumor for stopping its future spreading. Some ap-

proaches [1–3] have been proposed for the problem of

diffusion history inference. The existing methods, however,

often focus only on single information diffusion trace, while

different information diffusions often coexist in real-world

social networks, and a node often participates in multiple

information diffusions at the same time period.

In this paper, we investigate the problem of using sparse
observations to infer the detailed histories of multiple in-
formation diffusions coexisting in a given network, which is

not easy due to the following challenges:

(1) Data Sparsity Although massive data for information

diffusions have been collected in the big data era, it

is still likely that available observations of a single

diffusion are sparse and insufficient, which makes it
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extremely hard to infer the coexisting information dif-

fusions separately.

(2) Lack of Priori Knowledge In real world, information

diffusion processes are so complicated that we seldom

exactly know how information propagates and it is not

appropriate to assume information diffusion follows a

parametric model like Independent Cascade (IC) model

and Susceptible-Infected (SI) model [3].

(3) Efficiency In the big data era, a network often consists

of billions of nodes and edges. Therefore, effcient algo-

rithms are indispensable for the inference of coexisting

information diffusions on a huge network.

In this paper, we propose a novel model, called Collabo-

rative Inference Model (CIM), which exploits the synergism

between the coexisting information diffusions to holistically

model them as a 4th-order tensor, called Coexisting Diffu-

sions Tensor (CDT), without priori assumptions of diffusion

models, and fulfills the collaborative inference via a low-

rank approximation of sparse CDT. To improve the inference

accuracy, four heterogeneous constraints generated from

additional data sources are fused with the decomposition.

To make the inference efficient, we further propose an opti-

mized decomposition algorithm, called Time Window based

Parallel Decomposition Algorithm (TWPDA), which can

speed up the decomposition in a parallel way without loss

of approximation accuracy by making use of the temporal

locality of information diffusions.

II. PRELIMINARIES

Let C = {c1, · · · , cM} be the set of M memes who co-

exist over a network G consisting of N nodes {v1, · · · , vN}
during Q time points 〈t1, t2, · · · , tQ〉, where the term meme
represents anything that can propagate over a social network,

for example, it can be a label, a key word, or a news, etc.

Definition 1: An infection e is a 4-tuple (e.s, e.d, e.c, e.t),
which represents an infection of meme c ∈ C from source

node s to destination node d (s, d ∈ V ) at time point t.

In our case, term infection is a generalized concept which

represents the smallest blocks constituting a diffusion trace.

For example, when one user retweets or comments on a

tweet of another user, we can claim that the user is infected

by the meme of the tweet. Note that an infection can happen
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more than once. For example, one may post tweets of the

same meme many times in the same week.

Definition 2: An information diffusion of meme cm (m =
1, 2, · · · ,M ) is a set E(m) consisting of infections whose

meme is cm, i.e., E(m) = {e|e.c = cm}.
E(m) can be viewed as a sequence of temporal snapshots

, i.e., E(m) =
⋃Q

q=1E
(m)
q , where E

(m)
q is the snapshot at

time point tq , i.e., E
(m)
q = {e| e ∈ E(m) and e.t = tq}.

III. COLLABORATIVE INFERENCE MODEL

A. Coexisting Diffusions Tensor

A CDT A ∈ R
N×N×M×Q consists of 4 modes which

respectively represent N source nodes, N destination nodes,

M memes that concurrently diffuse, and Q time points.

A cell of the CDT, Aijmq , stores the frequency of the

occurrences of an infection e of meme cm from source node

vi to destination node vj at time point tq . Note that in a CDT,

a node can be a source and a destination as well.

B. Sparse CDT Approximation

As CDT codes all the information, the problem of the

inference of coexisting information diffusions can be re-

duced to the approximation of the sparse CDT A. We

construct a dense tensor Â as the estimate of A by a Tucker

decomposition [4],

A ≈ Â = G ×1 S ×2 D ×3 C ×4 T , (1)

i.e., a core tensor G ∈ R
R×R×R×R multiplied by 4 latent

factor matrices, S ∈ R
N×R, D ∈ R

N×R, C ∈ R
M×R, and

T ∈ R
Q×R, along its 4 modes respectively, where R is the

target rank, and the symbol ×i (1 ≤ i ≤ 4) stands for the

tensor multiplication along the ith mode.

To achieve a higher approximation accuracy, Â is pro-

duced by solving the following optimization problem:

argmin
G,S,D,C,T

L(G,S,D,C,T ). (2)

The objective function L(G,S,D,C,T ) is defined as

L(G,S,D,C,T ) =
1

2
ε(Â) +

λ1
2
γ(G,S,D,C,T )

+
λ2
2
φ(S,D) +

λ3
2
ψ(D,C)

+
λ4
2
ξ(C) +

λ5
2
τ(T ),

(3)

where λ1 ∼ λ5 are the nonnegative parameters used to

control the respective contributions of the terms. The first

term ε(Â) is the reconstruction error of the observable

cells, which is defined as ε(Â) = ‖ÂΩ − AΩ‖2F , where

‖ · ‖F stands for Frobenius norm of tensor, and Ω repre-

sents the set of the indices of the observable tensor cells.

The second term γ(G,S,D,C,T ) is the regularization

constraints for avoiding overfitting, which is defined as

γ(G,S,D,C,T ) = ‖G‖22+‖S‖22+‖D‖22+‖C‖22+‖T ‖22,

where ‖·‖2 stands for 2-norm of matrix. The last four terms

of Equation (3) respectively represent four heterogeneous

constraints which are described in the following subsection.

C. Heterogeneous Constraints

1) Source-Destination Affinity Constraint: An infection

partly depends on the affinity between the source node and

destination node, and the affinity strength is not reciprocal

[5–7]. Based on this idea, we build a Source-Destination

Affinity (SDA) matrix X ∈ R
N×N . X is asymmetric, and

an element Xij indicates how likely node vi will react to

its neighbor node vj , 1 ≤ i, j ≤ N , which is defined as

Xij =
|{vp | fip < fij}|+ 0.5|{vp | fip = fij}|

|Fi| , (4)

where Fi is the neighbor set of vi, vp ∈ Fi, and fij is the

number of reactions from vi to vj .

X can be factorized as X = S × DT , where S and

D are exactly the latent feature matrices of source nodes

and destination nodes of infections, and shared with the

CDT decomposition shown in Equation (1). Thus the SDA

constraint is defined as

φ(S,D) = ‖X − SDT ‖22. (5)

The insight here is that the knowledge of coexisting infor-

mation diffusions, which is represented by the CDT Â, can

fuse, through S and D, with the social affinity features of

the nodes, which is represented by X .

2) Node-Meme Affinity Constraint: Intuitively, one is

likely to care more about specific memes than other memes.

Based on this idea, we build a Node-Meme Affinity (NMA)

matrix Y ∈ R
N×M . An element Y ij (1 ≤ i ≤ N ,

1 ≤ j ≤ M ) is defined as the proportion of the infections

with meme cj in the infections with destination vi, i.e.,

Y ij =
|{e | e.d = vi ∧ e.c = cj}|

|{e | e.d = vi}| , (6)

where e is an infection. As Y carries the information of

destination nodes and memes of infections, we can factorize

it as Y = D ×CT , where D and C are the latent feature

matrices of destination nodes and memes, respectively. Note

that Y shares D and C with Equation (1), so to fuse Y
with the decomposition, the NMA constraint is defined as

ψ(D,C) = ‖Y −DCT ‖22. (7)

3) Meme-Correlation Constraint: We often observe that

related memes tend to share similar diffusion pattern. To

capture the correlation between memes, we build a Meme

Correlation (MC) matrix Z ∈ R
M×M . An element Zij is

defined as the proportion of co-occurrence of meme ci and

cj , i.e.,

Zij =
|Ni ∩Nj |
|Ni ∪Nj | , (8)
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where Nx = {v|v ∈ V ∧ e.d = v ∧ e.c = cx} is the set

of nodes infected by meme cx, x = i, j. Reasonably, if Zij

is large, the distance between meme latent feature vectors

Ci∗ and Cj∗ (the i-th and j-th row vector of C) should be

small, which leads to the following MC constraint:

ξ(C) = tr(CT (K −Z)C), (9)

where K ∈ R
M×M is a diagonal matrix with diagonal

elements Kii =
∑

j Zij .

4) Temporal Smoothness Constraint: Like heat diffusion,

information always diffuses gradually on networks without

drastic change of node status [8–10], which exhibits a prop-

erty of Temporal Smoothness (TS). Therefore we impose

on the CDT decomposition the TS constraint τ(T ) which is

defined as:

τ(T ) = ‖T −UT ‖22, (10)

where U ∈ R
Q×Q is the temporal smoothing matrix with

0 elements except for U i,i+1 = 1, 1 ≤ i ≤ Q − 1. By

minimizing τ(T ), it is guaranteed that the temporal latent

features at two successive time points are similar.

IV. DECOMPOSITION ALGORITHMS

A. Native Decomposition Algorithm

As there is no closed-form solution to Equation (2), we

first propose a Native Decomposition Algorithm (NDA)

based on gradient descent to find a local minima. The outline

of NDA is given in Algorithm 1, where nonzero cells of the

sparse CDT are updated along the gradient direction until the

objective function converges (Lines 6 to 16). NDA performs

the decomposition on the whole tensor (that is why it is

called ’native’), which makes it unable to scale up to a big

CDT with millions cells.

B. Time Window based Parallel Decomposition Algorithm

Recent researches reveal that information diffusions in

social networks exhibit a property of temporal locality [11],

which implies that in a CDT, a slice may has less to do

with the slices at time points far away. Inspired by this idea,

we propose a Time Window based Parallel Decomposition

Algorithm (TWPDA) for solving Equation (2). TWPDA

employs a sliding time window scheme, where the width of

each time window is determined adaptively and separately.

With respect to the time windows, TWPDA splits a CDT

into a series of sub-tensors with different sizes along time

dimension.

1) Sliding Time Window and Sub-tensor: Let T = 〈t1, t2,
· · · , tQ〉 be a sequence of Q time points considered, and

then a sliding time window over T and its corresponding

sub-tensor can be defined as follows:

Definition 3: A sliding time window is an interval, de-

noted by [s, q], starting in time point ts and ending in time

point tq , 1 ≤ s ≤ q ≤ Q, such that if [s′, q′] is the successive

time window of [s, q], s′ = s+ 1 and q′ > q.

Algorithm 1 NDA(A,X,Y ,Z,U , R, ε)

Input: A: the sparse CDT; X: the SDA matrix; Y : the

NMA matrix; Z: the MC matrix; R: the target rank; ε:
the threshold of error;

Output: Â: the approximated CDT;

1: Randomly initialize matrices S, D, C, T , and core

tensor G ;

2: Set η as step size;

3: Set Kii =
∑M

i=1 Zij for 1 ≤ i ≤M ;

4: LZ = K −Z;

5: lossa = L(G,S,D,C,T );
6: repeat
7: for all Aijkl �= 0 do
8: Bijkl = G ×1 Si∗ ×2 Dj∗ ×3 Ck∗ ×4 T l∗;
9: Si∗ = Si∗−ηλ5Si∗−ηλ1(Si∗×DT −Xi∗)×D

−η(Bijkl−Aijkl)×G×2D×3C×4T ;

10: Dj∗ = Dj∗−ηλ5Dj∗−ηλ1(S×DT
j∗−X∗j)T×S

−ηλ2(Dj∗ ×CT − Y j∗)×C
−η(Bijkl−Aijkl)×G×1S×3C×4 T ;

11: Ck∗ = Ck∗−ηλ5Ck∗−ηλ2(D×CT
k∗−Y ∗k)T×D

−ηλ3(LZ ×C)k∗
−η(Bijkl−Aijkl)×G×1S×2D×4T ;

12: T l∗ = T l∗−ηλ5T l∗−ηλ4(T l∗−T l∗×U)× (I−
U)T

−η(Bijkl−Aijkl)×G×1S×2D×3C;

13: G = G − ηλ5G
−η(Bijkl −Aijkl)× Si∗ ◦Dj∗ ◦Ck∗ ◦ T l∗;

14: end for
15: lossb = L(G,S,D,C,T );
16: until |lossa − lossb| < ε
17: Â = G ×1 S ×2 D ×3 C ×4 T ;

Definition 4: The sub-tensor corresponding to time win-

dow [s, q] (1 ≤ s ≤ q ≤ Q), denoted by A[s,q], consists of

the q−s+1 slices A∗∗∗i (i = s, s+1, · · · , q) concatenated

along the time dimension.

For example, in Fig. 1, there are 3 sliding time windows,

[1, 3], [2, 5], and [3, 6], and their corresponding sub-tensors

are A[1,3], A[2,5], and A[3,6]. Note that successive sub-

tensors are overlapped.

2) Determining Time Window Width: As the observations

are sparse and distributed nonuniformly, if the time windows

share a fixed width, some sub-tensors may have insufficient

observed data for inference while some ones may possess an

excessive amount of data leading to overfitting. To address

this issue, TWPDA adaptively determines the width of a time

window with respect to the number of non-zero cells that the

corresponding sub-tensor has, so that the denser (sparser) the

observed infections, the narrower (wider) the time window.

Let nnz(A[s,q]) be the number of non-zero cells of sub-

tensor A[s,q]. Then the width of the time window starting in

time point ti, denoted by ωi, is evaluated by the following
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Figure 1. Illustration of TWPDA.

function:

ωi = f(αi) =

⎧⎪⎨⎪⎩
Q− i+ 1, αi ≥ Q− i+ 1

αi, nnz(A[i,(i+αi−1)]) ≥ β ,

f(αi + 1), nnz(A[i,(i+αi−1)]) < β
(11)

where αi = ωi−1 is the initial width of the time window

starting in time point ti, and β is the given threshold of the

number of non-zero cells.

Fig. 1 shows some time windows with different widths. In

Fig. 1, the time window starting in t2 and the time window

starting in t3 are stretched, since the slices A∗∗∗4 and A∗∗∗5
are pretty sparse.

3) Generating Final Result: As sub-tensors are over-

lapped, so to reasonably generate the final approximated

CDT, we take the weighted average of the multiple approx-

imations of a shared slice as its final result, and according

to the temporal locality, it is reasonable that the wider the

time window, the smaller the weight of the approximation

produced by the sub-tensor corresponding to that time win-

dow. Based on this idea, the final approximation of a time

slice A∗∗∗k is evaluated as

Â∗∗∗k =
1

W

∑
̂A[s,q]

s.t. s≤k≤q

w[s,q] × Â[s,q]

∗∗∗k, (12)

where Â[s,q]

∗∗∗k is the approximation of A∗∗∗k that is con-

tained in the approximated sub-tensor Â[s,q]
, w[s,q] =

1
2|q−s+1| is the weight of Â[s,q]

∗∗∗k, and W =
∑
w[s,q] is the

regularization factor.

4) Outline of TWPDA: The outline of TWPDA is given

in Algorithm 2, where the major computation is invoking

Algorithm 2 TWPDA(A,X,Y ,Z,U , R, ε, α1, β)

Input: A: the sparse CDT; X: the SDA matrix; Y : the

NMA matrix; Z: the MC matrix; U : the TS matrix;

R: the target rank; ε: the threshold of error; α1: the

initial width of first time window; β: the threshold of

the number of non-zero cells;

Output: Â: the approximated CDT;

1: Initialize the cells of Â with zero;

2: Generate the sliding time windows {[s, q]} by using

Equation (11) with α1 and β;

3: Construct the sub-tensors {A[s,q]};
4: Generate {Â[s,q]} in parallel, by invoking NDA with

A[s,q], X , Y , Z, U [s,q], R and ε, where U [s,q] is the

sub-matrix consisting of rows from U s∗ to U q∗;
5: Generate in parallel the final result Â∗∗∗k, 1 ≤ k ≤ Q,

according to Equation (12);

6: Generate Â by concatenate the approximated time

slices{Â∗∗∗k} along the time dimension;

NDA (shown in Algorithm 1) in parallel for each sub-tensor

to generate the approximation (Line 4).

V. EXPERIMENTS

The experiments are conducted on a Spark cluster con-

sisting of 3 PCs where each PC equipped with a 2.7 GHz

INTEL CPU of 4 cores and 128 GB RAM, and all the

programs are written with MATLAB 2016b.

A. Experiment Setting

1) Datasets: Twitter We choose the Twitter dataset re-

leased by Zhang et al. [13], which consists of 8 million

tweets posted by 5,000 users during the period from Jan.

2009 to Dec. 2012. From the Twitter dataset, we extract 5

memes and construct a CDT of R
5000×5000×5×48 for test,

where the time dimension consists of 48 months. We use

the Foursquare dataset also released by Zhang et al. [13] as

the additional data source, which shares the users with the

Twitter dataset and from which we build the heterogeneous

constraint matrices X , Y and Z.

Weibo The Sina Weibo network is the largest microblog-

ging website in China. The first Weibo dataset is crawled

with the method proposed Kong et al. [14], which consists of

80,000 tweets posted by 3,000 users in May, 2014. From the

firsts Weibo dataset, we also extract 5 memes and construct a

CDT of R3000×3000×5×31 for test, where the time dimension

consists of 31 days. We also crawled the second Weibo

dataset for the same users as the additional data source from

which we build the heterogeneous constraint matrices X , Y
and Z. In the second Weibo dataset, the tweets are posted

in April 2014, which are before the time of the tweets in

the first Weibo dataset.
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Figure 2. RA on (a) Twitter and (b) Weibo
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Figure 3. RMSE on (a) Twitter and (b) Weibo

2) Metrics: To evaluate the effectiveness of the proposed

CIM, we use two metrics, recovery accuracy (RA) and root

mean square error (RMSE). Let Aijmq be a non-zero cell

whose original value is removed as the ground truth and

Âijmq be its estimate, and then RA and RMSE are defined

as follows:

RA =
1

S

∑
i,j,m,q

I(AijmqÂijmq), (13)

RMSE =

√
1

S

∑
i,j,m,q

(Aijmq − Âijmq)2, (14)

where S is the number of cells removed for test, and I(x) =
1 if x > 0, otherwise I(x) = 0.

3) Baseline Methods: We use two existing representative

algorithms, NETINF [15] and SSR [2], as the baseline

methods. Since they are designed for the reconstruction of

a single diffusion trace, we apply them to reconstruct the

multiple testing diffusion traces one by one, and evaluate

their respective performance by the average of the results

over the testing diffusion traces. To verify the effectiveness

of the heterogeneous constraints (X , Y , Z and T ), we

also compare CIM to Tucker Decomposition (TD) [4] and

the combinations of TD and subsets of the constraints, i.e.,

TD+X, TD+X+Y, and TD+X+Y+Z, where each method adds

one more constraint to the previous one.

B. Experiment Results

1) Effectiveness of CIM: We randomly remove different

percentages of cells and use their original values as the

ground truth, and the setting of parameters is R = 3,
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Figure 4. Time Cost of NDA and TWPDA on (a) Twitter and (b) Weibo

ε = 0.01, λ1 = λ2 = 1, λ3 = 0.3, λ4 = λ5 = 0.05,

and η = 0.001. Fig. 2 and Fig. 3 show the RA and RMSE

of CIM and the baseline methods, respectively, from which

we can find that on each scale of the removed cells of

both Twitter and Weibo, the RA and RMSE of CIM (with

TWPDA or NDA) are obviously higher and lower than

those of the baseline methods, respectively, which indicates

that CIM can recover unobserved infections more correctly

and also estimate their frequency more accurately. This is

because CIM takes advantage of the synergism between the

coexisting information diffusions and collaboratively infers

them via a low-rank approximation of a CDT.

What is more, the curves of TD, TD+X, TD+X+Y,

TD+X+Y+Z, and CIM show that the more number of

constraints is taken into consideration, the higher the RA

and the lower the RMSE, due to the fact that by fusing the

additional heterogeneous constraints into the decomposition

of CDT, CIM reduces the uncertainty of CDT significantly.

We can also note that with the increase of the scale of the

removed cells, the performance of CIM keeps approximately

stable, while the performance of alternative methods drops

markedly. Since the increasing number of the removed

cells leads to the sparser data, this result indicates that

CIM outperforms the alternative methods on sparse data

due to its collaborative reconstruction which utilizes the

correlation of coexisting information diffusions via the low-

rank approximation of sparse CDT.

2) Efficiency of TWPDA: From Fig. 4 we can see that

the running time of TWPDA is significantly less than that

of NDA on both Twitter and Weibo. This efficiency gain of

TWPDA is again due to the sliding time window scheme

which enables a parallel decomposition of the sub-tensors.

One can refer to the full paper [12] for more details about

the parallelizability of TWPDA.

VI. RELATED WORK

Gomez-Rodriguez et al [15]. propose an approach called

NETINF, which models an information cascade as a tree,

and builds a generative model to recover the underlying

diffusion network structure with a greedy strategy. Sefer et
al. [1] reduce the problem of diffusion history inference

to the problem of determining the maximum likelihood
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history given diffusion snapshots and propose an algorithm

called DHR-sub (sub-modular history reconstruction on dis-

crete dynamics) which reconstructs the history by greedily

maximizing the non-monotone sub-modular log-likelihood

at each time step. Chen et al. [2] formulate the diffusion

history inference problem as a maximum a posteriori (MAP)

estimate problem, and propose a greedy and step-by-step

reconstruction algorithm called SSR to infer the most likely

historical diffusion trace. Rozenshtein et al. [3] consider this

problem in a different way, which models an information

diffusion as a temporal Steiner-tree, and recover its histor-

ical spread flow by searching a temporal Steiner-tree with

minimum cost defined in advance. However, the existing

methods often focus on single diffusion trace and cannot

model multiple diffusion traces holistically and recover their

missing histories in a synergistic way.

VII. CONCLUSION

In this paper, we propose an approach called Collabora-

tive Inference Model (CIM), which can holistically model

multiple information diffusion traces as a sparse Coexisting

Diffusions Tensor (CDT), and can collaboratively infer the

histories of the coexisting information diffusions. To speed

up the inference without compromise on the accuracy, we

further propose an optimized algorithm called Time Window

based Parallel Decomposition Algorithm (TWPDA) as the

core component of CIM. The extensive experiments con-

ducted on real world datasets and synthetic datasets verify

the effectiveness and the efficiency of CIM and TWPDA.
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