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ABSTRACT
In this paper, we investigate the problem of reconstruct-
ing hidden trajectories from a collective of separate spatial-
temporal points without ID information, given the number
of hidden trajectories. The challenge is three-fold: lack of
meaningful features, data sparsity, and missing trajectory
links. We propose a novel approach called Hidden Trajec-
tory Reconstruction (HTR). From an information-theoretic
perspective, we devise five novel temporal features and com-
bine them into an Latent Spatial-Temporal Feature Vector
(LSTFV) to characterize the dynamics of a single spatial-
temporal point. The proposed features have the potential of
distinguishing spatial-temporal points between trajectories.
To overcome the data sparsity, we assemble the LSTFVs
to a sparse Temporal Feature Tensor (TF-Tensor) and pro-
pose an algorithm called Parallel Iterative Collaborative Ap-
proximation of Sparse Tensor (PICAST). PICAST approxi-
mates the TF-Tensor by decomposing it into a tensor prod-
uct of a low-rank core identity tensor and three dense fac-
tor matrices with a divide-and-conquer strategy. To achieve
a dense approximate tensor with good accuracy and effi-
ciency, PICAST minimizes a sparsity-measure and fuses an
additional matrix of static geographical region features. To
recover the missing trajectory links, we propose a map-
ping, Cross-Temporal Connectivity Preserving Transforma-
tion (CTCPT), to map the LSTFVs of the separate spatial-
temporal points to an intrinsic space called Cross-Temporal
Connectivity Preserving Space (CTCPS). CTCPT uses Cross-
Temporal Connectivity (CTC) to evaluate whether two spatial-
temporal points belong to the same trajectory and if they
do, how strong the connectivity between them is. Due to
the CTCPT, the hidden trajectories can be reconstructed
from clusters generated in CTCPS by a clustering algorithm.
At last, the extensive experiments conducted on synthetic
datasets and real datasets verify the effectiveness and effi-
ciency of our algorithms.
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1. INTRODUCTION
Uncertain trajectory reconstruction has attracted increas-

ing attention of researchers recently. The existing researches
often assume that most part of an uncertain trajectory is
known and the trajectory ID information is available [24, 4,
23, 11]. The assumptions, however, do not hold true for some
extremely uncertain situations, where only the trajectory
number and separate time-stamped points are given with-
out any available ID information. For example, in a cyber-
physical system, the sensors often report the location infor-
mation of moving objects without their identities [17], which
results in a collection of separate time-stamped points (we
refer to such points as spatial-temporal points) with un-
known trajectory links among them (here trajectory link
represents a directed connection from a predecessor point to
its successive point in a trajectory). For another example, in
radar applications, radars may just detect a series of sepa-
rate spatial-temporal points of aircrafts occurrence without
trajectory link information. It is thus necessary to recon-
struct their respective trajectories for the tracking purpose.
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Figure 1: (a) Spatial-temporal points with unknown
trajectory links. (b) Reconstructed hidden trajec-
tories.

In this paper, we investigate the problem of reconstruct-
ing hidden trajectories from a collection of separate spatial-
temporal points where only the trajectory number is known
but the trajectory links are unknown. Figure 1 gives an il-
lustration, where the space is defined by axes x and y. Fig-
ure 1(a) shows some separate spatial-temporal points among
which the trajectory links are lost. If we just know there ex-
ist two hidden trajectories among these seperate points, the
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task is to reconstruct the two hidden trajectories as shown
in Figure 1(b), which is not easy due to the following chal-
lenges:

• Lack of meaningful features In the test data, we
only have two features, location and time, for each
point. These two features are insufficient to rebuild the
trajectory link. We need to learn spatial and temporal
latent features behind each location and time point to
facilitate the trajectory discovery.

• Data sparsity The training trajectory data often span
a geographical area as wide as a city, which renders the
data for a specific region probably to be very sparse.
Similarly, although a single trajectory often exists in
only a short time period, say one hour or two hours, the
whole set of training trajectories might be distributed
over a long time period, say, one year, hence for a
short time interval, the training trajectory points are
also likely to be sparse.

• Missing trajectory links How to recover the trajec-
tory links among the points that belong to the same
hidden trajectory? Note that not all the given points
have to be part of a trajectory, as some points are iso-
lated and can be recognized as noises. Furthermore,
the recovery of trajectory links becomes more challeng-
ing when the trajectories we consider might be entan-
gled since moving objects could travel together for a
while and then diverge. For example, in Fig. 1(b), the
two hidden trajectories meet at point a, which makes it
difficult to exactly determine which hidden trajectory
a belongs to.

In this paper, we propose a novel approach for Hidden Tra-
jectories Reconstruction, called HTR. Our main idea to ad-
dress the above challenges stems from the intuition that
spatial-temporal points belonging to the same trajectory should
be able to be grouped into the same cluster in an appropri-
ate space. Our major contributions can be summarized as
follows:
(1) LSTFV To address the lack of meaningful features, we

model the latent features of a point by a Latent Spatial-
Temporal Feature Vector (LSTFV). An LSTFV consists
of five components which can be extracted from five la-
tent spatial-temporal feature matrixes learned from the
training trajectories.

(2) PICAST To address the data sparsity, we propose an
algorithm called Parallel Collaborative Approximation
of Sparse Tensor (PICAST), where a Temporal Fea-
ture Tensor (TF-Tensor) is built based on training data.
TF-Tensor is of three modes which respectively repre-
sent time slots, regions and LSTFVs, and for each in-
put spatial-temporal point, its LSTFV can be extracted
from the TF-Tensor. PICAST approximates the sparse
tensor by decomposing it into a tensor product of a low-
rank core identity tensor and three dense factor matri-
ces. PICAST pursues a dense approximate tensor with
good accuracy. For this purpose, PICAST minimizes a
sparsity-measure and fuses an additional matrix of static
geographical region features. To obtain the dense factor
matrices efficiently, PICAST uses a divide-and-conquer
strategy.

(3) CTCPT To recover missing trajectory links, we pro-
pose a mapping, Cross-Temporal Connectivity Preserv-

ing Transformation (CTCPT), which can map the LST-
FVs of the input spatial-temporal points to an intrin-
sic space called Cross-Temporal Connectivity Preserving
Space (CTCPS). CTCPT uses Cross-Temporal Connec-
tivity (CTC) to evaluate whether two spatial-temporal
points belong to the same trajectory and if they do,
how strong the connectivity between them is. CTCPT
can be learned from training data based on some known
training trajectories. The optimization objective of the
CTCPT learning is to preserve the CTC between two
spatial-temporal points that belong to the same tra-
jectory in the training data. CTCPT ensures that the
transformed points in the CTCPS are close if and only if
the corresponding input spatial-temporal points belong
to the same hidden trajectory, so that the hidden tra-
jectories can be reconstructed from clusters generated
in the CTCPS. At last, in order to recognize the hid-
den trajectories that share spatial-temporal points, we
employ the Fuzzy c-Means algorithm to generate over-
lapping clusters, where the number of clusters is exactly
the number of the reconstructed hidden trajectories.

(4) We conduct extensive experiments on synthetic and real
datasets to verify the performance of our approach.

The rest of this paper is organized as follows. The overview
of HTR is introduced in Section 2. The definitions of TF-
Tensor and LSTFV are described in Section 3. The details of
PICAST are described in Section 4. The detail of CTCPT is
presented in Section 5. The Hidden Trajectory Reconstruc-
tion algorithm is presented in Section 6. We analyze the
experimental results in Section 7. At last, we briefly review
the related work in Section 8 and conclude in Section 9.

2. OVERVIEW

Definition 1. Spatial-Temporal Point: A spatial-temporal
point q is defined as a 3-tuple (σ, τ, id), where q.σ is the re-
gion where q occurs, q.τ is the time slot number of the time-
stamp of q, q.id is the ID of the trajectory that q belongs
to.

Note that (1) in our setting, q.id is assumed to be unknown
unless q is one of the points in the training data we use
to learn the temporal features and CTCPT; (2) we do not
need the accurate coordinates of a spatial-temporal point,
but the region where a point appeared, e.g., a square. In
this paper, we just consider road networks as the geographic
space where a region represents a road segment. Besides, we
consider the time of day as the important factor due to the
periodicity of human movements [22], and divide one day
into slots with width of 30 minutes and use the slot number
in conjunction with the date to represent a time-stamp.

Definition 2. Trajectory: A trajectory s is a time or-
dered sequence of spatial-temporal points 〈q1, q2, · · · , qns〉,
where ns is the length of trajectory s, and all qi.id are
from the same trajectory ID which may be unknown, and
qi.τ < qi+1.τ .

If a moving object stays at the same region for multiple
consecutive time points, we will merge those points into one
spatial-temporal point, which ensure that the region of the
ith spatial-temporal point is always different from that of
the no. (i+ 1) spatial-temporal point.
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Figure 2: Work Flow of HTR

Figure 2 shows the work flow of our proposed approach,
which contains a learning part and a reconstructing part.
The learning part includes two subparts, Feature Genera-
tion and CTCPT learning. During the Feature Generation,
we generate 5 temporal features for each region in each time
slot from trajectories in the training data and build the TF-
Tensor. To fill in the sparse cells of the TF-Tensor, we use
PICAST to produce an approximate dense tensor in a paral-
lel way. CTCPT Learning produces a transformation matrix
from the trajectories in the training data. The path along
the dashed arrows is the reconstructing part, which fulfils
the hidden trajectory reconstruction from the input of sepa-
rate spatial-temporal points qi whose trajectory IDs are un-
known. It first extracts the LSTFV xi of each input point
from the approximation tensor produced by CAST, then
maps the LSTFVs to the CTCPS by applying the CTCPT.
Finally, hidden trajectories are reconstructed from clusters
generated in the CTCPS by applying the Fuzzy c-Means
algorithm.

3. LATENT SPATIAL-TEMPORAL FEATURE
VECTOR

In this section, we first define Latent Spatial-Temporal
Feature Vector (LSTFV), and then justify it.

3.1 LSTFV
For a spatial-temporal point qi, its LSTFV is defined as

a 5-dimensional vector xi = (e, g, d, h, u)T , where xi.e =
e(qi.σ, qi.τ), xi.g = g(qi.σ, qi.τ), xi.d = d(qi.σ, qi.τ), xi.h =
h(qi.σ, qi.τ), and xi.u = u(qi.σ, qi.τ) represent respectively
the 5 temporal features, transition randomness, visiting nor-
mality, stability, horizon, and significance.

3.1.1 Transition Randomness
We define transition randomness to measure the uncer-

tainty of the regions that a moving object will visit after
visiting region r. At first we introduce the concept of tran-
sition link from a given region to another region. If there
exists a trajectory visiting region r at time t, then there ex-
ists a transition link from r to another region visited by that
trajectory later than t.

Definition 3. Transition Link: For a given region r and

a time t, there exists a transition link, r
t→ r′, from r to

another region r′ at t if ∃qj , qk such that qj .id = qk.id, qj .σ =
r, qk.σ = r′, qj .τ = t, and qj .τ < qk.τ .

Definition 4. Transition Randomness: Let R′ be a set of
regions to which there exist transition links from a region

r at t, i.e., R′ = {r′|r t→ r′}, then the transition ran-
domness e(r, t) of region r at time t is defined as e(r, t) =

−
∑
r′∈R′ P (r

t→ r′)log2P (r
t→ r′) where P (r

t→ r′) is the

probability of a transition link r
t→ r′.

The probability P (r
t→ r′) can be estimated from the

training trajectory set S. Let Srt be the subset of S consist-
ing of trajectories that visit r at time t, i.e., Srt = {s|s ∈
S & ∃q, q.id = s, q.σ = r, q.τ = t}, and let Er

′
rt be the subset

of Srt consisting of trajectories that visit r′ at time t′ > t,

i.e., Er
′
rt = {s|s ∈ Srt & ∃q, q.id = s, q.σ = r′, q.τ > t}, then

P (r
t→ r′) =

|Er′
rt |
|Srt| .

3.1.2 Visiting Normality
We define visiting normality to indicate how normal it is

that region r is visited at t by a moving object. Intuitively,
if the visiting time to r is rather random (which means the
visits to r are almost uniformly distributed over time slots),
any visit to r at any time is normal. Otherwise, only the
visits at the time of a high probability are considered normal.
Based on this intuition, we can define the visiting normality
of a region r at t as follow:

Definition 5. Visiting Normality: The visiting normality

g(r, t) of region r at time t is defined as g(r, t) = P (t|r)
Hr

, where

Hr = −
∑
t′ P (t′|r)log2P (t′|r), P (t|r) is the probability of a

visit to r at time t, which can be estimated as P (t|r) = |Srt|
|Sr| ,

where Sr = {s|∃q, q.id = s, q.σ = r}

3.1.3 Stability
We define stability to measure the uncertainty of the time

length for which a moving object will stay at a region. At
first we define the stay time of a trajectory at a region r.

Definition 6. Stay Time: For a trajectory s visiting r
at time t, the stay time td(s, r, t) of s at r is defined as
td(s, r, t) = qi+1.τ − qi.τ , where qi.id = qi+1.id = s, qi.τ = t
and qi.σ = r.

Definition 7. Stability: The stability of region r at time
t is defined as d(r, t) = −

∑
t′∈Td(r,t)

P (t′)log2P (t′), where

Td(r, t) is the set of different stay time lengths at region r
at time t, and P (t′) is the probability of stay time length t′,

which can be estimated as P (t′) =
|St′

rt|
|Srt| , where St

′
rt = {s|s ∈

Srt & td(s, r, t) = t′}.

3.1.4 Horizon
We define the horizon of a region r at time t as the ex-

pected length of trajectories that visit r at t, which measures
how large the moving range of a object who passes through
region r usually is.

Definition 8. Horizon: Let L(r, t) be the set of different
lengths of the trajectories that visit region r at time t, then
the horizon of region r at t is defined as h(r, t) =

∑
l∈L(r,t) l×

P (l), where P (l) can be estimated as P (l) =
|Zl

rt|
|Srt| , where

Zlrt = {s|s ∈ Srt & |s| = l}.
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3.1.5 Significance
We define the significance to measure how indispensable

the region r is for a trajectory which visits it at t.

Definition 9. Significance: LetN(r) be the set of r’s neigh-
bor regions. The significance of region r at time t is defined
as the probability that r is the intermediary of any pair of

its neighbor regions at t, i.e., u(r, t) =
|Mr

rt|
|Mrt| , where Mrt =

{s|∃qi, qk ∈ s, k > i, qi.σ ∈ N(r), qk.σ ∈ N(r), qi.τ < t <
qk.τ}, and Mr

rt = {s|s ∈Mrt, ∃qj ∈ s, qj .σ = r, qj .τ = t}.

Definition 9 shows that the significance of region r at t is
the proportion of the training trajectories that visit r at t
over all the training trajectories that visit the neighbors of
r before and after t. The higher significance of region r at t,
the more likely region r is the intermediary point when an
object moves from its one neighbor to another neighbor at
time t, or in other words, for objects that pass from r’s one
neighbor to another, r is indispensable as a bridge.

3.2 Justification
We argue why the five proposed temporal features make

sense. The reason starts from our attempts to answer the
question that what makes trajectories look different. Our
answer is grounded on an information-theoretic idea that
each trajectory has a unique randomness which makes it
distinguishable from others. We use LSTFV to evaluate the
randomness of a single point from 5 aspects corresponding
to the five features, all of which are defined by using an
information entropy or a probability. Note that two sin-
gle points belonging to different trajectories might expose
similar randomness (that is why we can not reconstruct the
hidden trajectories by clustering the points directly in the
LSTFV space). However, the randomness of a trajectory
is still unique because it depends not only on the random-
ness of a single point, but also on a combination of the ran-
domness of the whole set of the points belonging to that
trajectory. We argue that it is such uniqueness that makes
the points belonging to the same trajectory be in the same
cluster in CTCPS, as we will see in Section 5.

4. PARALLEL COLLABORATIVE APPROX-
IMATION OF SPARSE TENSOR

Once we generate the LSTFVs for training points, we can
assemble them to a Temporal Feature Tensor (TF-Tensor).
As shown in Figure 3, the TF-Tensor T ∈ RM×N×5 con-
sists of three modes which respectively represent M regions
(r1, · · · , rM ), N time slots (t1, · · · , tN ), and the 5 tempo-
ral features. An entry T (i, j, q) stores the value of the q-th
feature of region ri in time slot tj , where i = 1, · · · ,M, j =
1, · · · , N, q = 1, · · · , 5. The 5 temporal features, a1, · · · , a5,
respectively correspond to the temporal features described
in the last section, transition randomness, visiting normality,
stability, horizon, and significance. For a spatial-temporal
point qi, its LSTFV xi can be retrieved as a tensor fiber,
i.e., xi = T (qi.τ, qi.σ, :).

As we have mentioned, TF-Tensor might be very sparse,
since the training trajectories span a city-wide area and are
distributed over a long time period. To address this prob-
lem, we propose a Parallel Iterative Collaborative Approx-
imation of Sparse Tensor (PICAST). In the following sub-
sections, we first define the model of PICAST, then present
its implementation.

4.1 Model of PICAST
As illustrated in Figure 3, we approximate the original

tensor T by a CP decomposition [9],

T ≈ T̃ = I ×1 B ×2 U ×3 V , (1)

i.e., a core identity tensor I ∈ RL×L×L multiplied by three
latent factor matrices, B ∈ RM×L, U ∈ RN×L, V ∈ R5×L,
along its three modes respectively, where L is the target
rank, and the symbol ×i (1 ≤ i ≤ 3) stands for the tensor
multiplication along the i-th mode.
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Figure 3: Model of PICAST

We argue that the decomposition shown in Equation (1) is
meaningful. Actually, V can be regarded as the information
about LSTFV, U as the information about time, and B as
the information about region.

To make the approximate tensor T̃ as dense as possi-
ble, we choose the classical sparsity-measure, the n-rank of
tensor (in our case, n = 3) [9], as part of the objective
function that PICAST is going to minimize. The n-rank of

T̃ is an n-dimension vector consisting of the ranks of the

unfolding matrices of T̃ , which is defined as: rankn(T̃ ) =

〈rank(T̃(1)), · · · , rank(T̃(n)))〉, where T̃(i), 1 ≤ i ≤ n, is the

unfolding matrix along the mode-i of T̃ . However, minimiz-

ing the sum
∑n
i=1 rank(T̃(i)) is difficult since it is non-convex

[6]. So we relax it to become the convex function: ‖T̃ ‖tr =∑n
i=1 ‖T̃(i)‖tr, where ‖X‖tr is the trace norm of matrix X.

We argue that ‖T̃ ‖tr is a reasonable convex approxima-

tion of
∑n
i=1 rank(T̃(i)), because for each T̃(i), ‖T̃(i)‖tr ≤

rank(T̃(i)), which leads to ‖T̃ ‖tr ≤
∑n
i rank(T̃(i)).

In order to achieve a higher accuracy of the approxima-
tion, we collaboratively decompose T with a static geo-
graphical feature matrix F ∈ RM×5 we build as an extra
information source, as shown in Figure 3. The 5 static geo-
graphical features f1, · · · , f5 of a road segment (i.e. a region)
r are respectively r’s length, direction (e.g. one-way or bi-
directional), the number of r’s lanes, the number of r’s neigh-
bors, and the number of Point of Interests (POIs) around r.
An entry F (i, j) stores the value of the j-th static geograph-
ical feature of region ri, where i = 1, · · · ,M, j = 1, · · · , 5.
F can be factorized as F = B × Y , where Y ∈ RL×5 is
another latent factor matrix. Note that F shares B with
T . The idea here is that the dynamical temporal knowledge
of the spatial-temporal points, which is represented by the
tensor T , can fuse, through B, with the static geographical
features of the regions, which is represented by F .



ALGORITHM 1: PICAST (T ,F , ε)
Input: Tensor T , static geographical feature matrix F ,

and error threshold ε.
Output: Factor matrices V ,U ,B.

Partition T into a grid of sub-tensors, {T (~k)};
Set η as step size;

for each sub-tensor T (~k) do

Initialize V (~k),U (~k),B(~k),Y (~k) with small random
values;
while Γt − Γt+1 > ε do

for each T (~k)
ijl 6= 0 do

V
(~k)
i∗ = V

(~k)
i∗ − η∂V (~k)

i∗
Γ;

U
(~k)
j∗ = U

(~k)
j∗ − η∂U(~k)

j∗
Γ;

B
(~k)
l∗ = B

(~k)
l∗ − η∂B(~k)

l∗
Γ;

Y (~k) = Y (~k) − η∂
Y (~k)Γ;

end

end

end
Concurrently build V ,U ,B by iteratively
concatenating the factors of the sub-tensors,

V (~k),U (~k),B(~k), in terms of Lemma 1;

Now we can define the optimization objective of PICAST
as to minimize the following function:

Γ(V ,U ,B,Y ) =
1

2
‖T − T̃ ‖22 +

1

2
‖T̃ ‖2tr +

1

2
‖F −BY ‖22

+
1

2
(‖V ‖22 + ‖B‖22 + ‖U‖22 + ‖Y ‖22)

(2)

where ‖ · ‖2 represents the 2-norm of matrix. The first term
of the right side of Equation (2) controls the decomposition
error, the second term controls the sparsity, the third term
controls the error of factorization of F , and the last term is
the regularizing term used to avoid overfitting. Note that the
collaborative decomposition part is inspired by [20], but the
sparsity control part is a novel contribution of this paper, by
which PICAST is able to make an optimal tradeoff between
the density and the accuracy of the approximate tensor.

4.2 Divide-and-Conquer Strategy
The sparse tensor T will incur a very high computa-

tional cost of Equation (1) due to its huge volume. To
overcome this issue, we use a divide-and-conquer strategy.
Algorithm 1 gives the procedures of PICAST. PICAST first
partitions the tensor T into a grid of sub-tensors (), T =

{T (~k)|~k ∈ K}, where K is a collection of sub-tensor indexes,
K = {[k1, k2, k3]|1 ≤ k1 ≤ K1, 1 ≤ k2 ≤ K2, 1 ≤ k3 ≤ K3},
and Ki(1 ≤ i ≤ 3) is the number of sub-tensors along
ith mode. Then PICAST concurrently factorizes the sub-
tensors with respect to the objective Equation (2) by using
a stochastic gradient descent decomposition algorithm [8],
and finally integrates the partial results to produce the final
factor matrices for the whole tensor. The following lemma
ensures that a large-scale tensor decomposition can be ob-
tained by integrating the factors of its sub-tensors [14].

Lemma 1. If a tensor T can be partitioned into two sub-
tensors T (1) and T (2), and they are factorized as T (1) =
I(1) ×1 V (1) ×2 U (1) ×3 B(1) and T (2) = I(2) ×1 V (2) ×2

U (2)×3B
(2) respectively, then the tensor T can be factorized

as T = I×1V ×2U×3B, where I =

[
I(1)

I(2)

]
, V =[

V (1) V (2)
]
, U =

[
U (1) U (2)

]
, and B =

[
B(1)

B(2)

]
.

For the approximation of a sub-tensor, T (~k) ≈ T̃
(~k)

=

I(~k)×1 V
(~k)×2 U

(~k)×3 B
(~k), the gradients of the objective

function Γ(V (~k),U (~k),B(~k),Y (~k)) are given by the following
equations:

∂
V

(~k)
i∗

Γ = (T̃
(~k)

ijl − T (~k)
ijl )× I(~k) ×2 U

(~k)
j∗ ×3 B

(~k)
l∗

+ ∂
V

(~k)
i∗
‖T̃

(~k)
‖tr + V

(~k)
i∗ ,

∂
U

(~k)
j∗

Γ = (T̃
(~k)

ijl − T (~k)
ijl )× I(~k) ×1 V

(~k)
i∗ ×3 B

(~k)
l∗

+ ∂
U

(~k)
j∗
‖T̃

(~k)
‖tr + U

(~k)
j∗ ,

∂
B

(~k)
l∗

Γ = (T̃
(~k)

ijl − T (~k)
ijl )× I(~k) ×1 V

(~k)
i∗ ×2 U

(~k)
j∗

+ (B
(~k)
l∗ × Y (~k) − F

(~k)
l∗ )× Y (~k) + ∂

B
(~k)
l∗
‖T̃

(~k)
‖tr

+ B
(~k)
l∗ ,

∂
Y (~k)Γ = (B

(~k)
l∗ × Y (~k) − F

(~k)
l∗ )×B

(~k)
l∗ + Y (~k),

where T̃
(~k)

ijl = I(~k) ×1 V
(~k)
i∗ ×2 U

(~k)
j∗ ×3 B

(~k)
l∗ . Note that it

is not difficult to derive ∂
V

(~k)
i∗
‖T̃

(~k)
‖tr = V

(~k)
i∗ × (ZZT +

ZTZ), where Z = I(~k) ×2 U
(~k)
j∗ ×3 B

(~k)
l∗ , and the remaining

derivatives of ‖T̃
(~k)
‖tr can be calculated similarly.

5. CROSS-TEMPORAL CONNECTIVITY PRE-
SERVING TRANSFORMATION (CTCPT)

5.1 Definition of Cross-Temporal Connectiv-
ity (CTC)

Cross-Temporal Connectivity (CTC) evaluates whether
two spatial-temporal points belong to the same trajectory
and if they do, how strong the connectivity between them
is.

Definition 10. Cross-Temporal Connectivity: The cross-
temporal connectivity between any two spatial-temporal points
qi and qj is defined as:

cij =

{
e−(|qi.τ−qj .τ |)(‖xi−xj‖2) if ∃s, qi ∈ s and qj ∈ s
0 otherwise

,

where s is a trajectory, and xi and xj are the LSTFVs of qi
and qj , respectively.

Definition 10 is reasonable due to its two properties. First,
CTC is nonzero only between two spatial-temporal points
belonging to the same trajectory. Second, the exponential
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function is used to assign a greater value to the CTC be-
tween qi and qj if they are closer in time, which is consistent
with the intuition that the neighboring points in a trajectory
should have a stronger connectivity than others. Similarly,
the CTC between the points with smaller ‖xi−xj‖2 is also
assigned a greater value.

5.2 Definition of CTCPT
CTCPT maps the LSTFV of a spatial-temporal point onto

the CTCPS by a transformation matrix A of 5×p, where p is
the dimensionality of the CTCPS. The objective is to make
the transformed points of any two spatial-temporal points
belonging to the same trajectory closer in CTCPS.

Definition 11. CTCPT: For any spatial-temporal point
qi, CTCPT is defined as the mapping, xi 7→ yi = ATxi,
such that yi is a p-dimensional vector, and for any two
spatial-temporal points qi and qj belonging to the same tra-
jectory, i.e. qi.id = qj .id, their transformed points, i.e. yi
and yj , are closer to each other than to any other trans-
formed point of qk, qk.id 6= qi.id.

5.3 Learning CTCPT
Now the problem turns out to be how to learn from train-

ing data a transformation matrix A satisfying Definition 11.
In this subsection, we first define the data structure we use
to learn the CTCPT, then define the objective function we
want to optimize during learning, at last describe our Lapla-
cian graph based learning algorithm.

5.3.1 Data Structure
The key data structure we used in the learning of CTCPT

is the weighted adjacent matrix of the training spatial-temporal
points, which is defined as follow.

Definition 12. Weighted Adjacent Matrix: Given a train-
ing trajectory dataset S, its weighted adjacent matrix W is
an m ×m matrix, where m is the total number of spatial-
temporal points in S. Each element wij is the weight be-
tween the training spatial-temporal points qi and qj , and
wij = cij .

5.3.2 Objective Function
Inspired by the idea proposed by M. Belkin et al. [3], we

choose the following function, γ(A) = 1
2

∑
i,j (yi − yj)

2wij ,
as the optimization criterion of the learning of the transfor-
mation matrix A from the training data, where yi = ATxi
and yj = ATxj are the transformed points, and xi and
xj are the LSTFVs of qi and qj respectively. It is easy to
check that a small value of γ(A) ensures the points belong-
ing to the same trajectory to be closer in the CTCPS than
the points belonging to different trajectories. The following
theorem gives a more tractable form of function γ(A).

Theorem 1. Let L be the Laplacian matrix of the weighted
adjacent matrix W , i.e., L = D −W , where D is a diag-
onal matrix of which the element dii =

∑
j wij, and Let X

be a matrix where the ith column vector is xi, then γ(A) =
ATXLXTA.

Proof.

γ(A) =
1

2

∑
i,j

(y2
i + y2

j − 2yiyj)wij

=
1

2
(
∑
i

(y2
i

∑
j

wij) +
∑
j

(y2
j

∑
i

wij)− 2
∑
i,j

yiyjwij)

=
1

2
(2
∑
i

y2
i dii − 2

∑
i,j

yiyjwij)

=
∑
i

y2
i dii −

∑
i,j

yiyjwij .

Since yi = ATxi (Definition 11), then γ(A) = ATX(D −
W )XTA = ATXLXTA.

In terms of Theorem 1, the solution of the following opti-
mization problem can be chosen as A:

argmin
A

ATXLXTA, s.t. XTADATX = Ik. (3)

where Il is an identity matrix of p × p. According to the
Spectral Graph Theory [5], the solution of Equation (3) is
A = (a1,a1, · · · ,ap), where the ith column ai(1 ≤ i ≤ p) is
the solution of the following generalized eigenvalue problem
corresponding to the ith smallest eigenvalue λi:

XLXTa = λXDXTa. (4)

5.3.3 Learning Algorithm
The outline of the CTCPT learning algorithm is presented

in Algorithm 2. The learning algorithm takes two inputs, the
training trajectory dataset S and the dimensionality l of the
CTCPS we want to generate. Note that since an LSTFV
is 5-dimensional, p can be any nonzero value less than 5.
The later experiment shows that p = 2 is the best choice in
practice.

ALGORITHM 2: LearningCTCPT (S, p)

Input: Historical trajectory dataset S, dimensionality
of CTCPS p.

Output: Transformation matrix A.
Build weight matrix W of S according to Definition 12;
Compute the solution (a1,a1, · · · ,ap) of Equation (4),
where A = ai(1 ≤ i ≤ p) is in ascending order by its
corresponding eigenvalue;

6. HIDDEN TRAJECTORY RECONSTRUC-
TION

The algorithm for Hidden Trajectory Reconstruction (HTR)
is presented in Algorithm 3. HTR first extracts the LSTFVs
of the input spatial-temporal points from the TF-Tensor and
applies the CTCPT to them, then groups the transformed
points by Fuzzy c-Means algorithm, and finally reconstructs
the hidden trajectories from the clusters.

7. EXPERIMENTAL EVALUATION

7.1 Settings
Datasets The first real dataset is Geolife which contains

over 17K GPS trajectories collected in Beijing (BJ), China,
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ALGORITHM 3: HTR(T ,A, Q)

Input: TF-Tensor T , CTCPT matrix A, collection of
separate spatial-temporal points Q, hidden
trajectory number K.

Output: Set of hidden trajectories Sh.
Sh = {};
for each qi in Q do

xi = T (qi.τ, qi.σ, :);

yi = ATxi;

end
Build Y , where ith column is yi;
Apply Fuzzy c-Means to Y ;
for each cluster Cj , j ∈ {1, · · · ,K} do

Sort the points yi ∈ Cj in ascending order of their
timestamps qi.τ ;
Build trajectory s = 〈q1, · · · , q|Cj |〉 according to the
order of yi, where qi is the spatial-temporal point
whose LSTFV xi corresponds to yi, 1 ≤ i ≤ |Cj |;
Sh = Sh ∪ {s};

end

during a period of four years [25]. The second real dataset
contains over 10K GPS trajectories of approximately 500
taxis collected over 30 days in San Francisco (SF) [15]. Each
dataset is split into two parts in order of time. We use the
earlier 80% of each dataset as the training data for PICAST
and CTCPT learning, and the later 20% as the test data in
which the trajectory ID information is removed.

Baselines To evaluate the precision of PICAST, we com-
pare it with four methods for inferring missing values: (1)
AVR infers a missing value by averaging the non-zero values
of all the entries within the same region; (2) AVT infers a
missing value by averaging the non-zero values of all the en-
tries in the same time slot; (3) Linear Regression (LR) infers
missing values by the interpolated values that are modelled
by a linear model; (4) The Context-Aware Tensor Decom-
position (CATD) proposed by Y. Wang et al. [20]. To ver-
ify the efficiency of PICAST, we compare it with its Serial
variant (SCAST) without any optimization and CATD. To
evaluate the performance of HTR, we compare it with LiSM
(LS) [17], the Kalman Filtering (KF), and TruAlarm (TA)
[18].

Metrics for PICAST We measure the precision of PI-
CAST by Mean Square Error (MSE), defined as MSE =∑n

i (yi−ŷi)2

n
, where ŷi is the estimate of the ith instance ŷi,

and n is the number of instances. We evaluate the per-
formance of HTR, in terms of precision and recall. There
are two precisions here. One is the trajectory precision,
which is the proportion of reconstructed true hidden trajec-
tories over all reconstructed trajectories. The other preci-
sion is the point precision, which is the proportion of the
points that are correctly assigned to the trajectory those
points belong to over all the points that are assigned to
that trajectory. Similarly, there are two recalls. One is the
trajectory recall, which is the proportion of reconstructed
true hidden trajectories over the ground truth. The other is
the point recall, which is the proportion of the points that
are correctly assigned to a trajectory over the ground truth
of all the points belonging to that trajectory.
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Figure 4: PICAST MSE over Different Target
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Figure 5: Effect of p on Precision (a) Trajectory
Precision (b) Point Precision.
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Figure 6: Effect of p on Recall (a) Trajectory Recall
(b) Point Recall.

Environments We conduct the experiments on a Hadoop
cluster consisting of 3 PCs, each of which is with an Intel
Core i7 CPU (2.3 GHz) and 16 GB RAM. The operating
system is Ubuntu with Linux kernel 3.18. All the programs
are implemented in Python and Matlab 2011b.

7.2 Sensitiveness of Parameters
Figure 4 shows the MSEs of PICAST over L = 2, 3, 4, 5, 6, 7,

8, 9, 10. One can see that the MSE of PICAST over the both
two real datasets achieves the minimum when L = 3, so we
choose value 3 as the target rank in the following experi-
ments.

Figure 5 and Figure 6 show the effects of different values of
p. It is easy to see that no matter for precision or recall, p =
2 is the best choice of CTCPS dimensionality on the datasets
we use in the experiments. When p = 1, underfitting exists
since the spatial-temporal points are actually projected onto
a line. On the other hand, when p > 2, overfitting happens.

7.3 Performance of PICAST

7.3.1 MSE of PICAST
We evaluate the precision of PICAST using the approach

proposed in [20]. We build a sparse tensor on each dataset,
and randomly remove 30% non-zero entries from the ten-
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Figure 7: MSE Comparison on (a) BJ and (b) SF.

sors, then infer these entries using PICAST. At last, we
compute the MSE by comparing the inferred values with
the corresponding original values. As shown in Figure 7,
the MSE of PICAST on both datasets is significantly lower
than the MSE of the baseline methods. At the same time,
we note that PICAST performs better on BJ than on SF,
due to the sparser tensor on SF, while PICAST outperforms
CATD due to the sparsity control captured in the objective
function (Equation (2)).

7.3.2 Efficiency of PICAST
We compare PICAST with SCAST and CATD on running

time first over synthetic datasets, then over the real datasets,
and the result is shown in Figure 8.
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Figure 8: Running Time Comparison

We generate a series of synthetic tensors of RK×K×K ,
where K = 1, 2, · · · , 10. As we can see from Figure 8(a),
the PICAST consumes no more 3 minutes of time, while
the running time of SCAST and CATD increases sharply as
the increase of the synthetic tensor size. Figure 8(b) shows
that on the dataset BJ, PICAST, SCAST and CATD take
1.58, 5.31 and 5.01 minutes respectively, and on the dataset
SF, 1.33, 3.44 and 4.21 minutes respectively. Clearly, PI-
CAST makes a significant improvement in running time on
all datasets.

7.4 Performance of HTR

7.4.1 Trajectory Precision and Recall
The trajectory precisions of HTR, LiSM, KF and TA on

different datasets are shown in Figure 9. As we can see from
Figure 9, the trajectory precision of HTR is significantly
higher than those of all the competitors on both datasets,
due to HTR’s stronger ability to discriminate between true
positive cases and false positive cases. Figure 9 shows that
on both datasets, HTR achieves a precision of near 98%,
which indicates that almost all the trajectories reconstructed
by HTR are true hidden trajectories occurring in reality.

The trajectory recalls of HTR, LiSM, KF and TA on dif-
ferent datasets are shown in Figure 10. One can see that
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Figure 9: Trajectory Precision on Different Datasets
(a) BJ (b) SF.
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Figure 10: Trajectory Recall on Different Datasets
(a) BJ (b) SF.

HTR has an average trajectory recall of about 90% on both
datasets, which is higher than those of the alternative ap-
proaches. The root cause of such superiority is that HTR
takes a completely different strategy to discover candidate
trajectories. HTR discovers the candidate trajectories all
at once by clustering the transformed points in a CTCPS.
In contrast, all the alternative approaches take some sorts
of tracking strategies to determine a trajectory. Tracking
strategies require accurately determining the start point and
the end point of a trajectory, which is hard to achieve in an
extremely uncertain situation without any trajectory link
information.

7.4.2 Point Precision and Point Recall
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Figure 11: Point Precision on Different Datasets (a)
BJ (b) SF.

The point precisions and the point recalls of HTR, LiSM,
KF and TA on different datasets are respectively shown in
Figure 11 and Figure 12. One can see that HTR outperforms
the alternative approaches since the point precision and the
point recall of HTR are both over 80%. These results indi-
cate that in sharp contrast to HTR, the tracking methods
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Figure 12: Point Recall on Different Datasets (a) BJ
(b) SF.

like LiSM, KF and TA are not suitable for the trajectories
each of which spans across a geographical area as wide as a
city. Particularly, TA is much worse than the other alterna-
tives as it likely confuses multiple intersecting trajectories
due to its tracking strategy of choosing the nearest spatial-
temporal point as the next point of a candidate trajectory.

7.4.3 Overall Efficiency of HTR
To verify the overall efficiency of HTR, over six synthetic

datasets of different sizes we compare its running time with
the running time of the Naive HTR (NHTR) which directly
factorizes a TF-Tensor without any optimization, and the
results are shown in Figure 13. We can draw three con-
clusions from the results. First, due to PICAST, the over-
all running time of HTR almost linearly increases with the
growth of dataset size, while the running time of NHTR
sharply increases when dataset contains more than 8,000
points. Second, when dataset size is less than 2,000, HTR
performs slightly poorer than NHTR. This is because on
small datasets, the contribution of PICAST to time saving
is disproportionately less than the extra overhead incurred
by its divide-and-conquer strategy. Third, the running time
of no matter HTR or NHTR is increasing with the number of
points, because more points are more likely distributed over
more regions which results in a larger size of the TF-Tensor.

8. RELATED WORK
Moving Object Detecting and Tacking Recently, mov-

ing object detecting and tracking have been attracting much
attention of the researchers of wireless networks [1, 12, 16,
18, 17] and trajectory mining [24, 4, 23, 11, 2]. Arora et al.
[1] propose a detection model based on acoustic and mag-
netic sensors. Ozdemir et al. [12] propose a particle filtering-
based algorithm to detect intruders in cyber-physical space.
Sheng et al. [16] propose an algorithm using maximum like-
lihood estimation. Tang et al. [18] propose the Tru-Alarm
filtering algorithm, which uses a nearest-neighboring strat-
egy to distinguish different moving objects. To overcome
the defect of Tru-Alarm, Tang et al. [17] further propose
cone-model based algorithm LiSM, which builds a watching
network from untrustworthy sensor data and estimates the
appearances of moving objects by using the link informa-
tion of the watching network. Zheng et al. [24] propose an
algorithm to rebuild uncertain piece of a low sampled tra-
jectory by using road network information. Cheng et al. [4]
propose a probabilistic approach to track uncertain moving
objects. Zheng et al. [23] investigate the problem of prob-
abilistic queries on uncertain trajectories on road networks.
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Larusso et al. [11] propose a Kalman Filter-based model to
update the current location of uncertain mobile objects with
a probability bounds of errors. Banerjee et al. [2] propose
a technique called InferTra to infer an uncertain trajectory
by generating a summary route from partial observations.
However, these methods cannot serve our goal since they
cannot tackle the extremely uncertain situations where no
trajectory link and ID information are available.

Uncertain Trajectory Modeling Hornsby et al. [7]
propose a cone model based on the fact that the move-
ment range of an object is constrained by maximal speed
between two observations [21]. Tang et al. [17] propose a
cone-model based algorithm LiSM, which builds a watching
network from untrustworthy sensor data and estimates the
appearances of moving objects by using the link informa-
tion of the watching network. Trajcevski et al. [19] pro-
pose a cylinder model in which an uncertain trajectory is
represented as a cylinder made up of horizontal circles at
different time. Pelekis et al. [13] present a grid model of
uncertain trajectories, which partitions a given space into a
set of disjoint cells. The models of uncertain trajectories on
road networks have different concerns, where the context of
uncertainty metrics turns to a graph. Kuijpers et al. [10] de-
velop the cone model under the constraint of road networks,
where only a subset of the edges of the road network are
taken into consideration for computing an uncertain area.
However, these traditional models are often built for small
and dense data, not for huge sparse data like the datasets
we deal with in this paper.

9. CONCLUSION
In this paper, we propose a novel approach for the Hidden

Trajectory Reconstruction, called HTR. At first, we model a
spatial-temporal point by an Latent Spatial-Temporal Fea-
ture Vector (LSTFV) based on which a Temporal Feature
Tensor (TF-Tensor) is built. To overcome the sparsity of the
TF-Tensor, we propose an algorithm called Parallel Iterative
Collaborative Approximation of Sparse Tensor (PICAST) to
approximate the TF-Tensor by decomposing it into a tensor
product of a low-rank core identity tensor and three dense
factor matrices. We also propose a Cross-Temporal Con-
nectivity Preserving Transformation (CTCPT), to map the
LSTFVs of the input spatial-temporal points to an intrinsic
space, called Cross-Temporal Connectivity Preserving Space
(CTCPS), in which the hidden trajectories can be recon-
structed from fuzzy clusters generated. The results of the
extensive experiments conducted on real datasets verify the
effectiveness and efficiency of our proposed HTR.
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